Câu 8 trang 135 SGK Đại số và Giải tích 11 Nâng cao
Cho một tam giác đều ABC cạnh a.
Cho một tam giác đều ABC cạnh a. Tam giác A 1 B 1 C 1 có các đỉnh là trung điểm các cạnh của tam giác ABC, tam giác A 2 B 2 C 2 có các đỉnh là trung điểm các cạnh của tam giác A 1 B 1 C 1 ,…, tam giác A n+1 B n+1 C n+1 có các đỉnh là trung điểm các cạnh của tam giác A n B n C n , … . Gọi p 1 , p 2 , ..., p n , … và S 1 , S 2 , …, S n , … theo thứ tự là chu vi và diện tích của các tam giác
LG a
Tìm giới hạn của các dãy số (p n ) và (S n ).
Lời giải chi tiết:
Ta có:
\({p_1} = {a \over 2} + {a \over 2} + {a \over 2} = {{3a} \over 2};\)
\({p_2} = \frac{a}{4} + \frac{a}{4} + \frac{a}{4}= {{3a} \over 4} = {{3a} \over {{2^2}}}\)
...
\({p_n} = {{3a} \over {{2^n}}}\) (1)
Chứng minh bằng qui nạp:
+) Với n=1 thì \({p_1} = \frac{{3a}}{2}\) (đúng).
+) Giả sử (1) đúng với n=k, tức là \({p_k} = {{3a} \over {{2^k}}}\). Ta chứng minh (1) đúng với n=k+1.
Tam giác \({A_{k + 1}}{B_{k + 1}}{C_{k + 1}}\) đồng dạng tam giác \(A_kB_kC_k\) theo tỉ số \(\frac{1}{2}\) nên có chu vi \({p_{k + 1}} = \frac{1}{2}{p_k} = \frac{1}{2}.\frac{{3a}}{{{2^k}}} = \frac{{3a}}{{{2^{k + 1}}}}\)
Do đó ta có \({p_n} = \frac{{3a}}{{{2^n}}}\).
Vì \(\lim {1 \over {{2^n}}} = \lim {\left( {{1 \over 2}} \right)^n} = 0\text { nên }\lim {p_n} = 0\)
Diện tích tam giác ABC là \(S = {{{a^2}\sqrt 3 } \over 4}\). Diện tích tam giác A 1 B 1 C 1 là \({S_1} = {S \over 4}\)
Bằng phương pháp qui nạp, ta chứng minh được rằng diện tích tam giác \({A_n}{B_n}{C_n}\) là \({S_n} = {{{a^2}\sqrt 3 } \over 4}.{\left( {{1 \over 4}} \right)^n}\)
Vì \(\lim {\left( {{1 \over 4}} \right)^n} = 0\) nên \(\lim {S_n} = 0\).
LG b
Tìm các tổng
\({p_1} + {p_2} + ... + {p_n} + ...\) và \({S_1} + {S_2} + ... + {S_n} + ...\)
Phương pháp giải:
Sử dụng công thức tính tổng cấp số nhân lùi vô hạn \(S = \frac{{{u_1}}}{{1 - q}}\)
Lời giải chi tiết:
Ta có (p n ) là cấp số nhân lùi vô hạn có công bội \(q = {1 \over 2},\) do đó :
\({p_1} + {p_2} + ... + {p_n} + ... = {{{p_1}} \over {1 - {1 \over 2}}}\) \( = 2{p_1}= 2.\frac{{3a}}{2} = 3a\)
(S n ) là cấp số nhân lùi vô hạn có công bội \(q' = {1 \over 4}\) do đó :
\({S_1} + {S_2} + ... + {S_n} + ... = {{{S_1}} \over {1 - {1 \over 4}}} \) \(= {4 \over 3}{S_1} = {S \over 3} = {{{a^2}\sqrt 3 } \over {12}}\)