Câu 8 trang 95 SGK Hình học 11 Nâng cao — Không quảng cáo

Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học Bài 2: Hai đường thẳng vuông góc


Câu 8 trang 95 SGK Hình học 11 Nâng cao

a. Cho vecto ... không cùng phương. Chứng minh rằng nếu vecto vuông góc với cả hai vecto

LG a

Cho vecto \(\overrightarrow n \) khác \(\overrightarrow 0 \) và hai vecto \(\overrightarrow a ,\overrightarrow b \) không cùng phương. Chứng minh rằng nếu vecto \(\overrightarrow n \) vuông góc với cả hai vecto \(\overrightarrow a \) và \(\overrightarrow b \) thì ba vecto \(\overrightarrow n ,\overrightarrow a ,\overrightarrow b \) không đồng phẳng.

Lời giải chi tiết:

Nếu \(\overrightarrow n ,\overrightarrow a ,\overrightarrow b \) đồng phẳng thì có hai số k, l sao cho \(\overrightarrow n  = k.\overrightarrow a  + l.\overrightarrow b \)

suy ra \(\overrightarrow n .\overrightarrow n  = k\overrightarrow a .\overrightarrow n  + l\overrightarrow b .\overrightarrow n  = 0 \) \(\Rightarrow {\left| {\overrightarrow n } \right|^2} = {\overrightarrow n ^2} = 0 \)

\(\Rightarrow \left| {\overrightarrow n } \right| = 0 \)

\(\Rightarrow \overrightarrow n  = \overrightarrow 0 \) (vô lí)

vậy \(\overrightarrow n ,\overrightarrow a ,\overrightarrow b \) không đồng phẳng

LG b

Chứng minh rằng ba vecto cùng vuông góc với vecto \(\overrightarrow n  \ne \overrightarrow 0 \) thì đồng phẳng. Từ đó suy ra các đường thẳng cùng vuông góc với một đường thẳng thì cùng song song với một mặt phẳng.

Lời giải chi tiết:

Giả sử ba vecto cùng vuông góc với \(\overrightarrow n \) là \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \)

Tức là \(\overrightarrow a .\overrightarrow n  = \overrightarrow b .\overrightarrow n  = \overrightarrow c .\overrightarrow n  = 0\)

Nếu \(\overrightarrow a \) và \(\overrightarrow b \) là hai vecto cùng phương thì \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) đồng phẳng

Nếu \(\overrightarrow a  \) và \(\overrightarrow b \) là hai vecto không cùng phương thì \(\overrightarrow a ,\overrightarrow b ,\overrightarrow n \) là ba vecto không đồng phẳng (điều này suy ra từ câu a)

Khi đó \(\overrightarrow c  = x\overrightarrow a  + y\overrightarrow b  + z\overrightarrow n .\)

Nhân vô hướng hai vế với \(\overrightarrow n ,\) ta có \(\overrightarrow c .\overrightarrow n  = x\overrightarrow a .\overrightarrow n  + y\overrightarrow b .\overrightarrow n  + z{\overrightarrow n ^2}\) suy ra \(z{\overrightarrow n ^2} = 0\,hay\,z = 0,\) tức là \(\overrightarrow c  = x\overrightarrow a  + y\overrightarrow b .\)

Vậy các vecto \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) đồng phẳng

Nếu ba đường thẳng d 1 , d 2 , d 3 cùng vuông góc với một đường thẳng thì do kết quả nêu trên, ta có ba vecto chỉ phương của ba đường thẳng d 1 ,d 2 ,d 3 đồng phẳng tức là ba đường thẳng d 1 ,d 2 ,d 3 cùng song song với một mặt phẳng.


Cùng chủ đề:

Câu 8 trang 35 SGK Hình học 11 Nâng cao
Câu 8 trang 50 SGK Hình học 11 Nâng cao
Câu 8 trang 62 SGK Đại số và Giải tích 11 Nâng cao
Câu 8 trang 78 SGK Hình học 11 Nâng cao
Câu 8 trang 80 SGK Hình học 11 Nâng cao
Câu 8 trang 95 SGK Hình học 11 Nâng cao
Câu 8 trang 100 SGK Đại số và Giải tích 11 Nâng cao
Câu 8 trang 121 SGK Hình học 11 Nâng cao
Câu 8 trang 123 SGK Hình học 11 Nâng cao
Câu 8 trang 126 SGK Hình học 11 Nâng cao
Câu 8 trang 135 SGK Đại số và Giải tích 11 Nâng cao