Processing math: 100%

Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 4 - Hình học 9 — Không quảng cáo

Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Hình học 9


Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 4 - Hình học 9

Giải Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 4 - Hình học 9

Đề bài

Bài 1: Cho hình chữ nhật ABCD có AB=a,BC=2a. Tính diện tích toàn phần và thể tích hình tạo ra khi quay tam giác ABC một vòng quanh AD.

Bài  2: Chi tiết máy có dạng như hình vẽ.

Tính diện tích bề mặt và thể tích của chi tiết đó.

LG bài 1

Phương pháp giải:

Diện tích toàn phần của hình được tạo ra bằng tổng của diện tích hình tròn bán kính AB với diện tích xung quanh hình trụ có đường sinh BC và diện tích xung quanh hình nón có đường sinh AC

Lời giải chi tiết:

Bài 1: ∆ ADC vuông tại D, có : AD = BC = 2a và DC= AB = a.

AC=AD2+DC2=(2a)2+a=a5

Diện tích toàn phần của hình được tạo ra bằng tổng của diện tích hình tròn bán kính AB với diện tích xung quanh hình trụ có đường sinh BC và diện tích xung quanh hình nón có đường sinh AC.

S tp = πAB 2 + 2πAB.BC + πDC.AC

= πa2+4πa2+πa.a5=πa2(5+5)

Vì ∆ABC = ∆ACD nên hình tạo bởi ∆ABC khi quay xung quanh AD có cùng thể tích với hình tạo bởi ∆ADC khi quay xung quanh AD. Đó là một hình nón và có thể tích :

Vn=13πR2h=13πa2.2a=2πa33.

LG bài 2

Phương pháp giải:

Diện tích xung quanh của hình nón:Sn=πRl

Diện tích xung quanh của hình trụ:St=2πRh

Thể tích hình trụ:Vt=πR2h

(Thể tích của chi tiết máy :V=Vt+2Vn)

Lời giải chi tiết:

Bài 2: Hình trụ có chiều cao 1m và bán kính đáy là 0,2m : 2 = 0,1m. Hai hình nón bằng nhau có bán kính đáy là 0,1m và có chiều cao là 0,2m, đường sinh AB = l .

Ta có : l=AB=AI2+IB2=(0,2)2+(0,1)2=0,05(m)

Gọi diện tích xung quanh của hình nón : Sn=πRl=π.0,1.0,05 và diên tích xung quanh của hình trụ : St=2πRh=2π.0,1.1

Diện tích bề mặt : S=St+2Sn=2π.0,1+2π.0,10,05

=0,2π(1+0,05)(m2)0,768(m2)

Gọi thể tích hình trụ : Vt=πR2h=π(0,1)2.1 và thể tích hình nón : Vn=13πR2h=13π(0,1)2.0,2

=> 2Vn=23π(0,1)2.0,2

Vậy thể tích của chi tiết máy :

V=Vt+2Vn=π(0,1)2+23π(0,1)2.0,2=0,01π(1+0,43)0,036(m3).


Cùng chủ đề:

Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 1 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 2 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 2 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 3 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 4 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Đề số 2 - Chương 1 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Đề số 2 - Chương 2 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Đề số 2 - Chương 2 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Đề số 2 - Chương 3 - Hình học 9