Đề kiểm tra học kì 1 Toán 6 Cánh diều - Đề số 5
Đề bài
Các số có chữ số tận cùng là … thì chia hết cho 5 và chỉ những số đó mới chia hết cho 5.
-
A.
0, 1, 2, 3
-
B.
0, 2, 4, 6, 8
-
C.
1, 3, 5, 7, 9
-
D.
0 hoặc 5
Hãy viết tập hợp các kết quả có thể xảy ra khi gieo một con xúc xắc 6 mặt
-
A.
\(1;2;3;4;5;6\)
-
B.
\(Y = 6\)
-
C.
\(6\)
-
D.
\(Y = \left\{ {1;2;3;4;5;6} \right\}\)
Hãy đọc bảng thống kê xếp loại hạnh kiểm lớp 6A sau:
Em hãy cho biết lớp 6A có tất cả bao nhiêu học sinh?
-
A.
25
-
B.
3
-
C.
2
-
D.
30
Hình lục giác đều có mấy cạnh
-
A.
3
-
B.
5
-
C.
6
-
D.
8
Tính giá trị của lũy thừa \({2^6},\) ta được
-
A.
\(32\)
-
B.
\(64\)
-
C.
\(16\)
-
D.
\(128\)
Cho ${a^2}.b.7 = 140$ với \(a,b\) là các số nguyên tố, vậy \(a\) có giá trị là bao nhiêu:
-
A.
$1$
-
B.
$2$
-
C.
$3$
-
D.
$4$
-
A.
Tổ 3 là 10, tổ 4 là 14
-
B.
Tổ 3 là 12, tổ 4 là 16
-
C.
Tổ 3 là 12, tổ 4 là 15
-
D.
Tổ 3 là 15, tổ 4 là 12
-
A.
Số đối của một số nguyên dương là một số nguyên âm.
-
B.
Số \(0\) không có số đối.
-
C.
Số đối của mọi số nguyên dương đều là số nguyên dương.
-
D.
Số đối của mọi số nguyên âm đều là số nguyên âm.
-
A.
\(( - 32) + ( - 14)\) >\( - 45\)
-
B.
\( - 45 < ( - 32) + ( - 14)\)
-
C.
\(( - 32) + ( - 14)\) <\( - 45\)
-
D.
\(( - 32) + ( - 14) = - 45\)
-
A.
\( - 46718 < - 46812\)
-
B.
\( - 67523 < - 66712\)
-
C.
\( - 12 > 7\)
-
D.
\( - 123 < - 126\)
Cho tập hợp \(A = \left\{ {x \in N|5 < x < 50,x \, \vdots \,15} \right\}\). Các phần tử của $A$ là:
-
A.
\(A = \left\{ {15;30;45} \right\}\)
-
B.
\(A = \left\{ {10,20,30,40} \right\}\)
-
C.
\(A = \left\{ {15,25,35,45} \right\}\)
-
D.
\(A = \left\{ {15,30,45,46} \right\}\)
Thêm chữ số \(7\) vào đằng trước số tự nhiên có ba chữ số thì ta được số tự nhiên mới
-
A.
Hơn số tự nhiên cũ \(700\) đơn vị
-
B.
Kém số tự nhiên cũ \(700\) đơn vị
-
C.
Hơn số tự nhiên cũ \(7000\) đơn vị
-
D.
Kém số tự nhiên cũ \(7000\) đơn vị
Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức không có dấu ngoặc?
-
A.
Cộng và trừ \( \to \) Nhân và chia \( \to \)Lũy thừa
-
B.
Nhân và chia\( \to \)Lũy thừa\( \to \) Cộng và trừ
-
C.
Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ
-
D.
Cả ba đáp án A,B,C đều đúng
Nếu tung một đồng xu 22 lần liên tiếp thì, có 14 lần xuất hiện mặt N thì xác suất thực nghiệm xuất hiện mặt N bằng bao nhiêu?
-
A.
\(\dfrac{7}{{11}}\)
-
B.
\(\dfrac{4}{{11}}\)
-
C.
\(\dfrac{4}{7}\)
-
D.
\(\dfrac{3}{7}\)
Cho biểu đồ tranh số học sinh khối lớp 6 được điểm 10 môn Toán trong tuần như sau:
Số học sinh được điểm 10 môn Toán vào Thứ Tư là bao nhiêu?
-
A.
1
-
B.
2
-
C.
5
-
D.
4
Bình nói: “\(a + b = b + a\)”. Đúng hay sai?
-
A.
A={Hình chữ nhật, hình vuông, hình tam giác}
-
B.
A={Hình chữ nhật, hình vuông, hình tam giác, hình bình hành}
-
C.
A={Hình chữ nhật, hình vuông, hình tam giác, hình bình hành, hình thang cân}
-
D.
A={Hình chữ nhật, hình vuông, hình tam giác, hình bình hành, hình thang}
-
A.
AB = 3cm
-
B.
AD = 3cm
-
C.
DC = 3cm
-
D.
AC= 3cm
Tính tổng của các số nguyên x, biết: $ - 7 < \;x \le {\rm{5}}.$
-
A.
$6$
-
B.
$0$
-
C.
$-6$
-
D.
$5$
Tập hợp số tự nhiên được kí hiệu là
-
A.
\(N\)
-
B.
\({N^*}\)
-
C.
\(\left\{ N \right\}\)
-
D.
\(Z\)
Tìm \(x\) biết \(9 + x = 2.\)
-
A.
$7$
-
B.
$ - 7$
-
C.
$11$
-
D.
$ - 11$
Khẳng định nào là sai:
-
A.
$0$ và $1$ không là số nguyên tố cũng không phải hợp số.
-
B.
Cho số $a > 1$, $a$ có $2$ ước thì $a$ là hợp số.
-
C.
$2$ là số nguyên tố chẵn duy nhất.
-
D.
Số nguyên tố là số tự nhiên lớn hơn $1$ mà chỉ có hai ước là $1$ và chính nó.
Cho khu đất hình bình hành độ dài đáy là 300 dm, chiều cao khu đất hình bình hành là 20 m. Diện tích hình bình hành đó là:
-
A.
6000 cm 2
-
B.
600 cm 2
-
C.
600 dm 2
-
D.
600 m 2
Thu gọn biểu thức \(z - (x + y - z) - \left( { - x} \right)\) ta được:
-
A.
\(2y - x\)
-
B.
\(y - 2x\)
-
C.
\(2z - y\)
-
D.
\(y\)
Điều tra loại phim yêu thích nhất của 36 học sinh lớp 6A3, bạn lớp trưởng thu được bảng dữ liệu ban đầu như sau:
Viết tắt: H: Hoạt hình; L: Lịch sử; K: Khoa học; C: Ca nhạc; T: Trinh thám.
Có bao nhiêu bạn thích phim Lịch sử?
-
A.
5
-
B.
6
-
C.
7
-
D.
8
Cho bảng giờ tàu HP1 Hà Nội – Hải Phòng tháng 10 năm 2020 như sau:
Quãng đường từ ga Gia Lâm đến ga Hải Dương; từ ga Hải Dương đến ga Hải phòng lần lượt là
-
A.
45 km, 52 km
-
B.
52 km, 45 km
-
C.
62 km, 45 km
-
D.
57 km, 102 km
Một tàu hỏa cần chở \(1200\) khách. Biết rằng mỗi toa có \(12\) khoang, mỗi khoang có \(8\) chỗ ngồi. Hỏi tàu hỏa cần ít nhất bao nhiêu toa để chở hết số khách tham quan.
-
A.
\(13\)
-
B.
\(15\)
-
C.
\(12\)
-
D.
\(14\)
Thực hiện phép tính \(\left( {{{10}^3} + {{10}^4} + {{125}^2}} \right):{5^3}\) một cách hợp lý ta được
-
A.
$132$
-
B.
$312$
-
C.
$213$
-
D.
$215$
Có bao nhiêu số vừa là bội của $5$ vừa là ước của $50$?
-
A.
$4$ số
-
B.
$5$ số
-
C.
$6$ số
-
D.
$7$ số
Tìm các ước chung của \(18;30;42.\)
-
A.
\(\left\{ {2;3;6} \right\}\)
-
B.
\(\left\{ {1;2;3;6} \right\}\)
-
C.
\(\left\{ {1;2;3} \right\}\)
-
D.
\(\left\{ {1;2;3;6;9} \right\}\)
Một trường tổ chức cho học sinh đi tham quan bằng ôtô. Nếu xếp \(35\) hay \(40\) học sinh lên một ô tô thì đều thấy thiếu mất \(5\) ghế ngồi. Tính số học sinh đi tam quan biết số lượng học sinh đó trong khoảng từ \(800\) đến \(900\) em.
-
A.
$845$
-
B.
$840$
-
C.
$860$
-
D.
$900$
Ba bạn An, Bình, Cường chơi ném tiêu với bia gồm năm vòng như hình 3.19. Kết quả được ghi lại trong bảng sau:
Sắp xếp tên các bạn theo thứ tự từ thấp đến cao là?
-
A.
An, Bình, Cường
-
B.
Bình, An, Cường
-
C.
An, Cường, Bình
-
D.
Cường, Bình, An
Một thửa ruộng hình chữ nhật có chu vi 200 m. Chiều dài hình chữ nhật hơn hai lần chiều rộng là 10m. Tính diện tích hình chữ nhật đó.
-
A.
1200 m 2
-
B.
2100 m 2
-
C.
200 m 2
-
D.
100 m 2
-
A.
Tam giác đều, trái tim, cánh diều
-
B.
Cánh quạt, trái tim, cánh diều
-
C.
Trái tim, Cánh diều
-
D.
Cả bốn hình
-
A.
Tam giác đều
-
B.
Cánh quạt
-
C.
Trái tim
-
D.
Cánh diều
Biểu đồ tranh dưới đây cho biết số học sinh nữ của các lớp khối 6 trường THCS Hoàng Việt.
Em hãy quan sát biểu đồ tranh ở trên và chọn đáp án đúng
-
A.
Lớp 6A1 có ít học sinh nữ nhất
-
B.
Lớp 6A4 có nhiều học sinh nữ hơn lớp 6A5
-
C.
Lớp 6A6 có 20 học sinh nữ.
-
D.
Tổng số học sinh nữ của các lớp khối 6 là 120 học sinh
Điền số thích hợp vào ô trống:
\(161291 + \)
\(= (6000 + 725) + 161291\)
Số \(A = \overline {abcd} - \left( {a + b + c + d} \right)\) chia hết cho số nào dưới đây?
-
A.
\(2\)
-
B.
\(5\)
-
C.
\(9\)
-
D.
\(6\)
Toán vui. Hai bạn Na và Toàn đứng đối diện nhau trên nền đất, ở giữa họ có một dãy các số và dấu cộng như hình dưới đây. Do vị trí nhìn khác nhau nên hai bạn thấy hai dãy các phép tính khác nhau.
Phép tính Toàn quan sát được để phép tính hai bạn quan sát thấy bằng nhau là:
-
A.
\({\bf{11}} + {\bf{8}}1 + 1{\bf{9}} + {\bf{91}} + {\bf{68}}{\rm{ }} = {\bf{270}} \)
-
B.
\({\bf{11}} + {\bf{86}} + {\bf{19}} + {\bf{91}} + {\bf{68}}{\rm{ }} = {\bf{275}} \)
-
C.
\({\bf{89}} + {\bf{16}} + {\bf{69}} + {\bf{61}} + {\bf{98}} + {\bf{11}}{\rm{ }} = {\bf{344}} \)
-
D.
\({\bf{89}} + {\bf{16}} + {\bf{69}} + {\bf{6}}8 + {\bf{9}}1 + 11{\rm{ }} = {\bf{344}} \)
Tìm giá trị lớn nhất của biểu thức: \(C = - {\left( {x - 5} \right)^2} + 10\)
-
A.
\( - 10\)
-
B.
\(5\)
-
C.
\(0\)
-
D.
\(10\)
Lời giải và đáp án
Các số có chữ số tận cùng là … thì chia hết cho 5 và chỉ những số đó mới chia hết cho 5.
-
A.
0, 1, 2, 3
-
B.
0, 2, 4, 6, 8
-
C.
1, 3, 5, 7, 9
-
D.
0 hoặc 5
Đáp án : D
Các số có chữ số tận cùng là 0 hoặc 5 thì chia hết cho 5 và chỉ những số đó mới chia hết cho 5.
Hãy viết tập hợp các kết quả có thể xảy ra khi gieo một con xúc xắc 6 mặt
-
A.
\(1;2;3;4;5;6\)
-
B.
\(Y = 6\)
-
C.
\(6\)
-
D.
\(Y = \left\{ {1;2;3;4;5;6} \right\}\)
Đáp án : D
Liệt kê các trường hợp của phép thử nghiệm gieo một con xúc xắc 6 mặt.
Viết các kết quả đó trong một tập hợp.
Các kết quả có thể xảy ra khi gieo một con xúc xắc 6 mặt là: 1 chấm, 2 chấm, 3 chấm, 4 chấm, 5 chấm, 6 chấm.
Vậy tập hợp cần tìm là \(Y = \left\{ {1;2;3;4;5;6} \right\}\)
Hãy đọc bảng thống kê xếp loại hạnh kiểm lớp 6A sau:
Em hãy cho biết lớp 6A có tất cả bao nhiêu học sinh?
-
A.
25
-
B.
3
-
C.
2
-
D.
30
Đáp án : D
Số học sinh lớp 6A bằng tổng của các học sinh hạnh kiểm Tốt, Khá, TB.
Số học sinh lớp 6A là: 25+3+2=30 (học sinh)
Hình lục giác đều có mấy cạnh
-
A.
3
-
B.
5
-
C.
6
-
D.
8
Đáp án : C
Hình lục giác đều có 6 cạnh
Tính giá trị của lũy thừa \({2^6},\) ta được
-
A.
\(32\)
-
B.
\(64\)
-
C.
\(16\)
-
D.
\(128\)
Đáp án : B
Sử dụng công thức \({a^n} = a.a.a...a\) (\(n\) thừa số $a$) để tính giá trị.
Ta có \({2^6} = 2.2.2.2.2.2 = 4.4.4 = 16.4 = 64.\)
Cho ${a^2}.b.7 = 140$ với \(a,b\) là các số nguyên tố, vậy \(a\) có giá trị là bao nhiêu:
-
A.
$1$
-
B.
$2$
-
C.
$3$
-
D.
$4$
Đáp án : B
- Phân tích số \(140\) thành tích các thừa số nguyên tố.
Suy ra $140 = {2^2}.5.7 = {a^2}.b.7$ nên \(a = 2\).
-
A.
Tổ 3 là 10, tổ 4 là 14
-
B.
Tổ 3 là 12, tổ 4 là 16
-
C.
Tổ 3 là 12, tổ 4 là 15
-
D.
Tổ 3 là 15, tổ 4 là 12
Đáp án : C
- Tổ 3: Màu xanh
- Tổ 4: Màu đỏ
Số cá tổ 3: 12
Số cá tổ 4: 15
-
A.
Số đối của một số nguyên dương là một số nguyên âm.
-
B.
Số \(0\) không có số đối.
-
C.
Số đối của mọi số nguyên dương đều là số nguyên dương.
-
D.
Số đối của mọi số nguyên âm đều là số nguyên âm.
Đáp án : A
- Số đối của một số nguyên dương là một số nguyên âm => C sai, A đúng
- Số đối của một số nguyên âm là một số nguyên dương => D sai.
- Số đối của \(0\) là \(0\) => B sai.
-
A.
\(( - 32) + ( - 14)\) >\( - 45\)
-
B.
\( - 45 < ( - 32) + ( - 14)\)
-
C.
\(( - 32) + ( - 14)\) <\( - 45\)
-
D.
\(( - 32) + ( - 14) = - 45\)
Đáp án : C
Thực hiện phép cộng.
So sánh kết quả với số \( - 45\).
-
A.
\( - 46718 < - 46812\)
-
B.
\( - 67523 < - 66712\)
-
C.
\( - 12 > 7\)
-
D.
\( - 123 < - 126\)
Đáp án : B
- Số nguyên âm luôn nhỏ hơn số nguyên dương.
- Để so sánh hai số nguyên âm, ta làm như sau:
Bước 1: Bỏ dấu “-” trước cả hai số âm.
Bước 2: Trong hai số nguyên dương nhận được, số nào nhỏ hơn thì số nguyên âm ban đầu (tương ứng) sẽ lớn hơn.
Do \(67523 > 66712\) nên \( - 67523 < - 66712\).
Khẳng định đúng là: B
Cho tập hợp \(A = \left\{ {x \in N|5 < x < 50,x \, \vdots \,15} \right\}\). Các phần tử của $A$ là:
-
A.
\(A = \left\{ {15;30;45} \right\}\)
-
B.
\(A = \left\{ {10,20,30,40} \right\}\)
-
C.
\(A = \left\{ {15,25,35,45} \right\}\)
-
D.
\(A = \left\{ {15,30,45,46} \right\}\)
Đáp án : A
Dựa vào phương pháp viết tập hợp bằng cách liệt kê các phần tử, chú ý đến yêu cầu của đề bài là \(5 < x < 50,x \,\vdots \, 15\).
Theo đề bài thì ta tìm trong khoảng từ 5 đến 50 các số chia hết cho 15 là: 15,30,45.
Do đó \(A = \left\{ {15,30,45} \right\}\) .
Thêm chữ số \(7\) vào đằng trước số tự nhiên có ba chữ số thì ta được số tự nhiên mới
-
A.
Hơn số tự nhiên cũ \(700\) đơn vị
-
B.
Kém số tự nhiên cũ \(700\) đơn vị
-
C.
Hơn số tự nhiên cũ \(7000\) đơn vị
-
D.
Kém số tự nhiên cũ \(7000\) đơn vị
Đáp án : C
Sử dụng mối quan hệ giữa các chữ số trong số tự nhiên.
Trong hệ thập phân, cứ mười đơn vị của một hàng thì làm thành đơn vị của hàng liền trước đó.
Gọi số có ba số ban đầu là \(\overline {abc} \) , viết thêm chữ số \(7\) vào đằng trước ta được \(\overline {7abc} \) .
Ta có \(\overline {7abc} = 7000 + \overline {abc} \) nên số mới hơn số cũ \(7000\) đơn vị.
Thứ tự thực hiện phép tính nào sau đây là đúng đối với biểu thức không có dấu ngoặc?
-
A.
Cộng và trừ \( \to \) Nhân và chia \( \to \)Lũy thừa
-
B.
Nhân và chia\( \to \)Lũy thừa\( \to \) Cộng và trừ
-
C.
Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ
-
D.
Cả ba đáp án A,B,C đều đúng
Đáp án : C
Đối với biểu thức không có dấu ngoặc thì thứ tự thực hiện phép tính đúng là : Lũy thừa\( \to \) Nhân và chia \( \to \) Cộng và trừ
Nếu tung một đồng xu 22 lần liên tiếp thì, có 14 lần xuất hiện mặt N thì xác suất thực nghiệm xuất hiện mặt N bằng bao nhiêu?
-
A.
\(\dfrac{7}{{11}}\)
-
B.
\(\dfrac{4}{{11}}\)
-
C.
\(\dfrac{4}{7}\)
-
D.
\(\dfrac{3}{7}\)
Đáp án : A
- Xác định tổng số lần gieo và số lần gieo được mặt N.
- Xác suất thực nghiệm= Số lần được mặt N: Tổng số lần gieo
Tổng số lần gieo là 22.
Số lần gieo được mặt N là 14.
Xác suất thực nghiệm xuất hiện mặt N là: \(\dfrac{{14}}{{22}} = \dfrac{7}{{11}}\)
Cho biểu đồ tranh số học sinh khối lớp 6 được điểm 10 môn Toán trong tuần như sau:
Số học sinh được điểm 10 môn Toán vào Thứ Tư là bao nhiêu?
-
A.
1
-
B.
2
-
C.
5
-
D.
4
Đáp án : D
- Mỗi một hình tròn tương ứng với 1 học sinh được điểm 10 môn Toán.
- Quan sát hàng “Thứ Tư” để tìm số học sinh được điểm 10.
Thứ Tư có 4 hình tròn tương ứng với 4 học sinh được điểm 10 môn Toán.
Bình nói: “\(a + b = b + a\)”. Đúng hay sai?
Khi đổi chỗ các số hạng trong một tổng thì tổng đó không thay đổi.
Nên : “\(a + b = b + a\) ”.
Vậy Bình nói đúng.
-
A.
A={Hình chữ nhật, hình vuông, hình tam giác}
-
B.
A={Hình chữ nhật, hình vuông, hình tam giác, hình bình hành}
-
C.
A={Hình chữ nhật, hình vuông, hình tam giác, hình bình hành, hình thang cân}
-
D.
A={Hình chữ nhật, hình vuông, hình tam giác, hình bình hành, hình thang}
Đáp án : D
+) Quan sát và nhận dạng các hình.
+) Các phần tử của A viết trong dấu ngoặc nhọn { }, cách nhau bởi dấu phẩy “,”
+) Các phần tử là tên các loại hình học.
Các hình trên theo thứ tự từ trái sang phải lần lượt là hình chữ nhật, hình vuông, hình bình hành, hình tam giác, hình thang.
Vậy A = {hình chữ nhật, hình vuông, hình bình hành, hình tam giác, hình thang}
-
A.
AB = 3cm
-
B.
AD = 3cm
-
C.
DC = 3cm
-
D.
AC= 3cm
Đáp án : B
Hình thang cân có hai cạnh bên bằng nhau.
Hình thang cân ABCD có AD và BC là hai cạnh bên nên: AD = BC = 3 cm.
Tính tổng của các số nguyên x, biết: $ - 7 < \;x \le {\rm{5}}.$
-
A.
$6$
-
B.
$0$
-
C.
$-6$
-
D.
$5$
Đáp án : C
Bước 1: Tìm các giá trị của x thỏa mãn $ - 7 < \;x \le {\rm{5}}.$ Bước 2: Tính tổng các giá trị của x vừa tìm được
Vì $ - 7 < \;x \le {\rm{5}}$ nên $x\; \in \;\left\{ { - 6; - 5; - 4; - 3; - 2; - 1;0;1;2;3;4;5} \right\}$ Tổng các số nguyên $x$ là: $( - 6) + ( - 5) + ( - 4) + ( - 3) + ( - 2) + ( - 1) + 0 + 1 + 2 + 3 + 4 + 5$$ = \left( { - 6} \right) + [( - 5) + 5\left] { + \left[ {\left( { - 4} \right) + 4} \right] + } \right[( - 3) + 3\left] + \right[( - 2) + 2\left] + \right[( - 1) + 1] + 0$$ = ( - 6) + 0 + 0 + 0 + 0 + 0 + 0 = - 6$
Tập hợp số tự nhiên được kí hiệu là
-
A.
\(N\)
-
B.
\({N^*}\)
-
C.
\(\left\{ N \right\}\)
-
D.
\(Z\)
Đáp án : A
Tập hợp số tự nhiên kí hiệu là N.
Tìm \(x\) biết \(9 + x = 2.\)
-
A.
$7$
-
B.
$ - 7$
-
C.
$11$
-
D.
$ - 11$
Đáp án : B
Muốn tìm số hạng chưa biết trong một tổng, ta thực hiện: Số hạng chưa biết $ = $ Tổng $ - $ Số hạng đã biết
\(\begin{array}{l}9 + x = 2\\x = 2 - 9\\x = - 7\end{array}\)
Khẳng định nào là sai:
-
A.
$0$ và $1$ không là số nguyên tố cũng không phải hợp số.
-
B.
Cho số $a > 1$, $a$ có $2$ ước thì $a$ là hợp số.
-
C.
$2$ là số nguyên tố chẵn duy nhất.
-
D.
Số nguyên tố là số tự nhiên lớn hơn $1$ mà chỉ có hai ước là $1$ và chính nó.
Đáp án : B
Áp dụng định nghĩa:
+ Hợp số là một số tự nhiên có thể biểu diễn thành tích của hai số tự nhiên khác nhỏ hơn nó. Một định nghĩa khác tương đương: hợp số là số chia hết cho các số khác ngoài 1 và chính nó.
+ Số nguyên tố là số tự nhiên lớn hơn $1$ mà chỉ có hai ước là $1$ và chính nó.
+) Số $a$ phải là số tự nhiên lớn hơn \(1\) và có nhiều hơn $2$ ước thì $a$ mới là hợp số nên B sai.
+) $1$ là số tự nhiên chỉ có $1$ ước là $1$ nên không là số nguyên tố và $0$ là số tự nhiên nhỏ hơn $1$ nên không là số nguyên tố. Lại có $0$ và $1$ đều không là hợp số do đó A đúng.
+) Số nguyên tố là số tự nhiên lớn hơn $1$ mà chỉ có hai ước là $1$ và chính nó nên D đúng và suy ra $2$ là số nguyên tố chẵn duy nhất nên C đúng.
Cho khu đất hình bình hành độ dài đáy là 300 dm, chiều cao khu đất hình bình hành là 20 m. Diện tích hình bình hành đó là:
-
A.
6000 cm 2
-
B.
600 cm 2
-
C.
600 dm 2
-
D.
600 m 2
Đáp án : D
- Đổi các độ dài ra cùng đơn vị đo
- Tính diện tích hình bình hành
Diện tích hình bình hành là: \(S = b.h\)
Trong đó \(b\) là cạnh, \(h\) là chiều cao tương ứng.
Đổi 300 dm = 30 m
Diện tích hình bình hành đã cho là: 30 . 20 = 600 (m 2 )
Thu gọn biểu thức \(z - (x + y - z) - \left( { - x} \right)\) ta được:
-
A.
\(2y - x\)
-
B.
\(y - 2x\)
-
C.
\(2z - y\)
-
D.
\(y\)
Đáp án : C
Khi bỏ dấu ngoặc, nếu đằng trước dấu ngoặc:
Có dấu “-”, thì phải đổi dấu tất cả các số hạng trong ngoặc
\( - \left( {a + b - c} \right) = - a - b + c\)
\(\begin{array}{l}z - (x + y - z) - \left( { - x} \right) = z - x - y + z + x\\ = \left( { - x + x} \right) + \left( {z + z} \right) - y\\ = 0 + 2z - y\\ = 2z - y\end{array}\)
Điều tra loại phim yêu thích nhất của 36 học sinh lớp 6A3, bạn lớp trưởng thu được bảng dữ liệu ban đầu như sau:
Viết tắt: H: Hoạt hình; L: Lịch sử; K: Khoa học; C: Ca nhạc; T: Trinh thám.
Có bao nhiêu bạn thích phim Lịch sử?
-
A.
5
-
B.
6
-
C.
7
-
D.
8
Đáp án : B
Đếm số chữ L: Số bạn thích phim Lịch sử
Quan sát bảng ta thấy có tất cả 6 chữ L nên có đúng 6 bạn thích phim Lịch sử.
Cho bảng giờ tàu HP1 Hà Nội – Hải Phòng tháng 10 năm 2020 như sau:
Quãng đường từ ga Gia Lâm đến ga Hải Dương; từ ga Hải Dương đến ga Hải phòng lần lượt là
-
A.
45 km, 52 km
-
B.
52 km, 45 km
-
C.
62 km, 45 km
-
D.
57 km, 102 km
Đáp án : B
- Quãng đường trong bảng là quãng đường từ ga Hà Nội (mốc 0 km) đến các ga trong mỗi cột.
- Quãng đường: lấy địa điểm ở cột bên phải trừ cột bên trái .
Quãng đường từ ga Gia Lâm đến ga Hải Dương :
57-5 =52 (km)
Quãng đường từ ga Hải Dương đến ga Hải Phòng :
102-57 =45 (km).
Một tàu hỏa cần chở \(1200\) khách. Biết rằng mỗi toa có \(12\) khoang, mỗi khoang có \(8\) chỗ ngồi. Hỏi tàu hỏa cần ít nhất bao nhiêu toa để chở hết số khách tham quan.
-
A.
\(13\)
-
B.
\(15\)
-
C.
\(12\)
-
D.
\(14\)
Đáp án : A
+ Tính số người mỗi toa chở được
+ Tính số toa
Mỗi toa chở số người là: \(12.8 = 96\) người
Vì tàu hỏa cần chở \(1200\) hành khách mà \(1200:96 = 12\) dư \(48\) hành khách nên cần ít nhất \(13\) toa để chở hết số khách tham quan.
Thực hiện phép tính \(\left( {{{10}^3} + {{10}^4} + {{125}^2}} \right):{5^3}\) một cách hợp lý ta được
-
A.
$132$
-
B.
$312$
-
C.
$213$
-
D.
$215$
Đáp án : C
Dùng tính chất \(\left( {a + b + c} \right):m = a:m + b:m + c:m\)
Và các công thức lũy thừa \({\left( {a.b} \right)^n} = {a^n}.{b^n};\,{\left( {{a^n}} \right)^m} = {a^{n.m}};\,{a^m}:{a^n} = {a^{m - n}}\) để tính toán.
Ta có \(\left( {{{10}^3} + {{10}^4} + {{125}^2}} \right):{5^3}\)
\( = {10^3}:{5^3} + {10^4}:{5^3} + {125^2}:{5^3}\)
\( = {\left( {2.5} \right)^3}:{5^3} + {\left( {2.5} \right)^4}:{5^3} + {\left( {{5^3}} \right)^2}:{5^3}\)
\( = {2^3}{.5^3}:{5^3} + {2^4}{.5^4}:{5^3} + {5^6}:{5^3}\)
\( = {2^3} + {2^4}.5 + {5^3}\)
\( = 8 + 16.5 + 125\)
$ = 8 + 80 + 125 = 213.$
Có bao nhiêu số vừa là bội của $5$ vừa là ước của $50$?
-
A.
$4$ số
-
B.
$5$ số
-
C.
$6$ số
-
D.
$7$ số
Đáp án : A
$\,\left\{ \begin{array}{l}B\left( 5 \right) = {\rm{\{ 5}}{\rm{.k| k}} \in {\rm{N\} }}\\Ư(50) = {\rm{\{ x}} \in {\rm{N}}|50 \, \vdots \, x{\rm{\} }}\end{array} \right.$
Gọi $x$ là số vừa là bội của $5$ vừa là ước của $50$.
\(\left\{ \begin{array}{l}x \in B\left( 5 \right)\\x \in Ư\left( {50} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x \in {\rm{\{ 0;}}\,{\rm{5;10;15;20;25;}}...{\rm{\} }}\\x \in {\rm{\{ 1;2;5;10;25;50\} }}\end{array} \right.\)
\( \Rightarrow \,x\, \in \,{\rm{\{ 5;10;25;50\} }}\)
Tìm các ước chung của \(18;30;42.\)
-
A.
\(\left\{ {2;3;6} \right\}\)
-
B.
\(\left\{ {1;2;3;6} \right\}\)
-
C.
\(\left\{ {1;2;3} \right\}\)
-
D.
\(\left\{ {1;2;3;6;9} \right\}\)
Đáp án : B
+ Tìm các ước của \(18;30;42.\)
+ Tìm các số là ước của cả ba số \(18;30;42.\)
+) Ư\(\left( {18} \right) = \left\{ {1;2;3;6;9;18} \right\}\)
+) Ư\(\left( {30} \right) = \left\{ {1;2;3;5;6;10;15;30} \right\}\)
+) Ư\(\left( {42} \right) = \left\{ {1;2;3;6;7;12;14;21;42} \right\}\)
Nên ƯC\(\left( {18;30;42} \right) = \left\{ {1;2;3;6} \right\}\)
Một trường tổ chức cho học sinh đi tham quan bằng ôtô. Nếu xếp \(35\) hay \(40\) học sinh lên một ô tô thì đều thấy thiếu mất \(5\) ghế ngồi. Tính số học sinh đi tam quan biết số lượng học sinh đó trong khoảng từ \(800\) đến \(900\) em.
-
A.
$845$
-
B.
$840$
-
C.
$860$
-
D.
$900$
Đáp án : A
+ Sử dụng kiến thức về phép chia có dư.
+ Sử dụng kiến thức về bội chung và bội chung nhỏ nhất.
+ Sử dụng cách tìm bội chung thông qua bội chung nhỏ nhất.
Gọi số học sinh đi thăm quan là \(x\,\left( {x \in {N^*};\,800 \le x \le 900} \right)\) (học sinh)
Nếu xếp \(35\) hay \(40\) học sinh lên một ô tô thì đều thấy thiếu mất \(5\) ghế ngồi nghĩa là thừa ra 5 học sinh nên ta có
\(\left( {x - 5} \right) \vdots 35;\,\left( {x - 5} \right) \vdots 40\) suy ra \(\left( {x - 5} \right) \in BC\left( {35;40} \right)\).
Ta có \(35 = 5.7;\,40 = {2^3}.5\) nên \(BCNN\left( {35;40} \right) = {2^3}.5.7 = 280.\)
Suy ra \((x-5) \in BC\left( {35;40} \right) = B\left( {280} \right) = \left\{ {280;560;840;1120;...} \right\}\) mà \(800 \le x \le 900\) nên \(x -5= 840\) hay $x=845.$
Vậy số học sinh đi thăm quan là \(845\) học sinh.
Ba bạn An, Bình, Cường chơi ném tiêu với bia gồm năm vòng như hình 3.19. Kết quả được ghi lại trong bảng sau:
Sắp xếp tên các bạn theo thứ tự từ thấp đến cao là?
-
A.
An, Bình, Cường
-
B.
Bình, An, Cường
-
C.
An, Cường, Bình
-
D.
Cường, Bình, An
Đáp án : B
Dựa vào bảng tính số điểm của mỗi bạn rồi so sánh.
Số điểm của An là: 10.1 + 2.7 + 1.(-1) + 1.(-3) = 20
Số điểm của Bình là: 2.10 + 1.3 + 2.(-3) = 17
Số điểm của Cường là: 3.7 + 1.3 + 1.(-1) = 23
Sắp xếp tên các bạn theo thứ tự từ thấp đến cao: Bình, An, Cường.
Một thửa ruộng hình chữ nhật có chu vi 200 m. Chiều dài hình chữ nhật hơn hai lần chiều rộng là 10m. Tính diện tích hình chữ nhật đó.
-
A.
1200 m 2
-
B.
2100 m 2
-
C.
200 m 2
-
D.
100 m 2
Đáp án : B
- Tính nửa chu vi thửa ruộng
=> Chiều dài và chiều rộng
- Tính diện tích thửa ruộng hình chữ nhật ( Diện tích HCN = Chiều dài. Chiều rộng)
Nửa chu vi thửa ruộng là:
200 : 2 = 100 (m)
Chiều rộng của thửa ruộng là:
(100 - 10) : 3 = 30 (m)
Chiều dài của thửa ruộng là:
100 - 30 = 70 (m)
Diện tích hình chữ nhật là:
70 . 30 = 2100 (m 2 )
-
A.
Tam giác đều, trái tim, cánh diều
-
B.
Cánh quạt, trái tim, cánh diều
-
C.
Trái tim, Cánh diều
-
D.
Cả bốn hình
Đáp án : D
Những hình có trục đối xứng: tam giác đều, cánh quạt, trái tim, cánh diều.
-
A.
Tam giác đều
-
B.
Cánh quạt
-
C.
Trái tim
-
D.
Cánh diều
Đáp án : B
Hình có tâm đối xứng là hình cánh quạt (Tâm đối xứng là tâm của đường tròn nhỏ phía trong)
Biểu đồ tranh dưới đây cho biết số học sinh nữ của các lớp khối 6 trường THCS Hoàng Việt.
Em hãy quan sát biểu đồ tranh ở trên và chọn đáp án đúng
-
A.
Lớp 6A1 có ít học sinh nữ nhất
-
B.
Lớp 6A4 có nhiều học sinh nữ hơn lớp 6A5
-
C.
Lớp 6A6 có 20 học sinh nữ.
-
D.
Tổng số học sinh nữ của các lớp khối 6 là 120 học sinh
Đáp án : C
Đếm số biểu tượng để tính số HS nữ của mỗi lớp (mỗi biểu tượng ứng với 10 HS nữ).
Số học sinh nữ.
Lớp 6A1: 2.10 = 20 học sinh nữ
Lớp 6A2: 3.10 = 30 học sinh nữ
Lớp 6A3: 1.10 = 10 học sinh nữ
Lớp 6A4: 2.10 = 20 học sinh nữ
Lớp 6A5: 3.10 = 30 học sinh nữ
Lớp 6A6: 2.10 = 20 học sinh nữ
Lớp 6A3 có ít học sinh nữ nhất (10 học sinh) => A sai
Lớp 6A5 có 30 học sinh nữ, lớp 6A4 có 20 học sinh nữ => Lớp 6A4 có ít học sinh nữ
hơn lớp 6A5. => B sai.
Lớp 6A6 có 20 học sinh nữ. => C đúng.
Tổng số học sinh nữ của các lớp khối 6 là: 20 + 30 + 10 + 20 + 30 + 20 = 130 học sinh.
=> D sai.
Điền số thích hợp vào ô trống:
\(161291 + \)
\(= (6000 + 725) + 161291\)
\(161291 + \)
\(= (6000 + 725) + 161291\)
Áp dụng tính chất giao hoán của phép cộng: Khi đổi chỗ các số hạng trong một tổng thì tổng đó không thay đổi.
Ta có: \((6000 + 725) + 161291 = 6725 + 161291\)
Hay \(161291 + 6725 = (6000 + 725) + 161291\)
Vậy đáp án đúng điền vào ô trống là \(6725\).
Số \(A = \overline {abcd} - \left( {a + b + c + d} \right)\) chia hết cho số nào dưới đây?
-
A.
\(2\)
-
B.
\(5\)
-
C.
\(9\)
-
D.
\(6\)
Đáp án : C
+ Phân tích \(\overline {abcd} = 1000a + 100b + 10c + d\) từ đó tính được \(A.\)
+ Dựa vào tính chất chia hết của một tổng và dấu hiệu chia hết cho \(9\) để giải bài toán.
Ta có \(A = \overline {abcd} - \left( {a + b + c + d} \right)\)\( = 1000a + 100b + 10c + d - \left( {a + b + c + d} \right)\)
\( = 999a + 99b + 9c + \left( {a + b + c + d} \right) - \left( {a + b + c + d} \right)\)
\( = 999a + 99b + 9c\)
Mà \(999 \, \vdots \, 9;\,99 \, \vdots \, 9;\,9 \, \vdots \, 9\) nên \(A \, \vdots \, 9.\)
Toán vui. Hai bạn Na và Toàn đứng đối diện nhau trên nền đất, ở giữa họ có một dãy các số và dấu cộng như hình dưới đây. Do vị trí nhìn khác nhau nên hai bạn thấy hai dãy các phép tính khác nhau.
Phép tính Toàn quan sát được để phép tính hai bạn quan sát thấy bằng nhau là:
-
A.
\({\bf{11}} + {\bf{8}}1 + 1{\bf{9}} + {\bf{91}} + {\bf{68}}{\rm{ }} = {\bf{270}} \)
-
B.
\({\bf{11}} + {\bf{86}} + {\bf{19}} + {\bf{91}} + {\bf{68}}{\rm{ }} = {\bf{275}} \)
-
C.
\({\bf{89}} + {\bf{16}} + {\bf{69}} + {\bf{61}} + {\bf{98}} + {\bf{11}}{\rm{ }} = {\bf{344}} \)
-
D.
\({\bf{89}} + {\bf{16}} + {\bf{69}} + {\bf{6}}8 + {\bf{9}}1 + 11{\rm{ }} = {\bf{344}} \)
Đáp án : C
Điền các số: 1; 6; 8; 9 vào ô trống để được phép tính đúng.
Phép tính Toàn quan sát được là:
\({\bf{89}} + {\bf{16}} + {\bf{69}} + {\bf{61}} + {\bf{98}} + {\bf{11}}{\rm{ }} = {\bf{344}} \)
Phép tính Na quan sát được là:
\({\bf{11}} + {\bf{86}} + {\bf{19}} + {\bf{69}} + {\bf{91}} + {\bf{68}}{\rm{ }} = {\bf{344}} \)
Tìm giá trị lớn nhất của biểu thức: \(C = - {\left( {x - 5} \right)^2} + 10\)
-
A.
\( - 10\)
-
B.
\(5\)
-
C.
\(0\)
-
D.
\(10\)
Đáp án : D
Áp dụng tính chất \({A^2} \ge 0\) với mọi A và tính chất \(m - {A^2} \le m\) để tìm giá trị lớn nhất của biểu thức.
\(C = - {\left( {x - 5} \right)^2} + 10\)
Ta có: \({\left( {x - 5} \right)^2} \ge 0,\,\forall x \in \mathbb{Z} \Rightarrow - {\left( {x - 5} \right)^2} \le 0,\;\,\forall x \in \mathbb{Z}\)\( \Rightarrow - {\left( {x - 5} \right)^2} + 10 \le 10,\,\;\forall x \in \mathbb{Z}\)
Suy ra \(C \le 10\,\,\forall x \in \mathbb{Z}\) .
\(C = 10\) khi \({\left( {x - 5} \right)^2} = 0 \Rightarrow x - 5 = 0 \Rightarrow x = 5\)
Vậy giá trị lớn nhất của C là 10 khi \(x = 5\) .