Giải bài 10 trang 59 SGK Toán 8 tập 2– Chân trời sáng tạo — Không quảng cáo

Toán 8, giải toán lớp 8 chân trời sáng tạo Bài tập cuối chương 7 Toán 8 chân trời sáng tạo


Giải bài 10 trang 59 SGK Toán 8 tập 2– Chân trời sáng tạo

Cho tam giác

Đề bài

Cho tam giác \(ABC\) và điểm \(D\) trên cạnh \(AB\) sao cho \(AD = 13,5cm;DB = 4,5cm\). Tính tỉ số các khoảng cách từ điểm \(D\) và \(B\) đến đoạn thẳng \(AC\).

Phương pháp giải - Xem chi tiết

Hệ quả của định lí Thales

Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh thứ ba thì tạo ra một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho.

Lời giải chi tiết

Gọi \(H;G\) lần lượt là hình chiếu vuông góc của \(D;B\)lên \(AC\).

Khi đó, khoảng cách từ \(D\) đến \(AC\) là \(DH\);khoảng cách từ \(B\) đến \(AC\) là \(BG\).

Ta có: \(AB = AD + BD = 13,5 + 4,5 = 18cm\)

Vì \(\left\{ \begin{array}{l}DH \bot AC\\BG \bot AC\end{array} \right. \Rightarrow DH//BG\)

Xét tam giác \(ABG\) có \(DH//BG\) nên theo hệ quả của định lí Thales ta có:

\(\frac{{AD}}{{AB}} = \frac{{DH}}{{BG}} \Leftrightarrow \frac{{13,5}}{{18}} = \frac{{DH}}{{BG}} = \frac{3}{4}\)

Vậy tỉ số khoảng cách từ điểm \(D\) và \(B\) đến đoạn thẳng \(AC\) là \(\frac{3}{4}\).


Cùng chủ đề:

Giải bài 9 trang 81 SGK Toán 8 tập 1– Chân trời sáng tạo
Giải bài 9 trang 85 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 9 trang 89 SGK Toán 8 tập 1– Chân trời sáng tạo
Giải bài 9 trang 96 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 9 trang 116 SGK Toán 8 tập 1– Chân trời sáng tạo
Giải bài 10 trang 59 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 10 trang 72 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 10 trang 85 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 10 trang 89 SGK Toán 8 tập 1– Chân trời sáng tạo
Giải bài 10 trang 96 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 10 trang 117 SGK Toán 8 tập 1– Chân trời sáng tạo