Giải bài 14 trang 27 sách bài tập toán 8 - Chân trời sáng tạo — Không quảng cáo

SBT Toán 8 - Giải SBT Toán 8 - Chân trời sáng tạo Bài tập cuối chương 1 - SBT Toán 8 CTST


Giải bài 14 trang 27 sách bài tập toán 8 - Chân trời sáng tạo

Phân tích các đa thức sau thành nhân tử: a) \(3\left( {a - b} \right) + 2{\left( {a - b} \right)^2}\);

Đề bài

Phân tích các đa thức sau thành nhân tử:

a) \(3\left( {a - b} \right) + 2{\left( {a - b} \right)^2}\);

b) \({\left( {a + 2} \right)^2} - \left( {4 - {a^2}} \right)\);

c) \({a^2} - 2ab - 4a + 8b\);

d) \(9{a^2} - 4{b^2} + 4b - 1\);

e) \({a^2}{b^4} - 81{a^2}\);

g) \({a^6} - 1\).

Phương pháp giải - Xem chi tiết

a) Sử dụng kiến thức phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung.

b, e) Sử dụng kiến thức phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung và hằng đẳng thức.

c) Sử dụng kiến thức phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử.

d) Sử dụng kiến thức phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử và hằng đẳng thức.

g) Sử dụng kiến thức phân tích đa thức thành nhân tử bằng phương pháp sử dụng hằng đẳng thức.

Lời giải chi tiết

a) \(3\left( {a - b} \right) + 2{\left( {a - b} \right)^2} = \left( {a - b} \right)\left( {3 + 2a - 2b} \right)\);

b) \({\left( {a + 2} \right)^2} - \left( {4 - {a^2}} \right) = {\left( {a + 2} \right)^2} - \left( {2 - a} \right)\left( {a + 2} \right) = \left( {a + 2} \right)\left( {a + 2 - 2 + a} \right) = 2a\left( {a + 2} \right)\);

c) \({a^2} - 2ab - 4a + 8b = \left( {{a^2} - 2ab} \right) - \left( {4a - 8b} \right) = a\left( {a - 2b} \right) - 4\left( {a - 2b} \right)\) \( = \left( {a - 2b} \right)\left( {a - 4} \right)\);

d) \(9{a^2} - 4{b^2} + 4b - 1 = 9{a^2} - \left( {4{b^2} - 4b + 1} \right) = {\left( {3a} \right)^2} - {\left( {2b - 1} \right)^2}\)\( = \left( {3a - 2b + 1} \right)\left( {3a + 2b - 1} \right)\);

e) \({a^2}{b^4} - 81{a^2} = {a^2}\left( {{b^4} - 81} \right) = {a^2}\left[ {{{\left( {{b^2}} \right)}^2} - {9^2}} \right] = {a^2}\left( {{b^2} - 9} \right)\left( {{b^2} + 9} \right)\)

\( = {a^2}\left( {{b^2} + 9} \right)\left( {b - 3} \right)\left( {b + 3} \right)\)

g) \({a^6} - 1 = \left( {{a^3} - 1} \right)\left( {{a^3} + 1} \right) = \left( {a - 1} \right)\left( {{a^2} + a + 1} \right)\left( {a + 1} \right)\left( {{a^2} - a + 1} \right)\).


Cùng chủ đề:

Giải bài 13 trang 50 sách bài tập toán 8 - Chân trời sáng tạo tập 2
Giải bài 13 trang 65 sách bài tập toán 8 - Chân trời sáng tạo tập 2
Giải bài 13 trang 74 sách bài tập toán 8 - Chân trời sáng tạo
Giải bài 13 trang 94 sách bài tập toán 8 - Chân trời sáng tạo tập 2
Giải bài 14 trang 19 sách bài tập toán 8 - Chân trời sáng tạo tập 2
Giải bài 14 trang 27 sách bài tập toán 8 - Chân trời sáng tạo
Giải bài 14 trang 31 sách bài tập toán 8 - Chân trời sáng tạo tập 2
Giải bài 14 trang 51 sách bài tập toán 8 - Chân trời sáng tạo tập 2
Giải bài 14 trang 74 sách bài tập toán 8 - Chân trời sáng tạo
Giải bài 15 (ôn tập chương 7) trang 51 sách bài tập toán 8 - Chân trời sáng tạo tập 2
Giải bài 15 trang 19 sách bài tập toán 8 - Chân trời sáng tạo tập 2