Giải bài 2. 15 trang 46 SGK Toán 8 - Cùng khám phá — Không quảng cáo

Toán 8, giải toán lớp 8 Cùng khám phá Bài 3. Cộng, trừ các phân thức đại số - Toán 8 - Cùng k


Giải bài 2.15 trang 46 SGK Toán 8 - Cùng khám phá

Thực hiện các phép tính sau:

Đề bài

Thực hiện các phép tính sau:

a) \(\frac{1}{{2x - 3}} - \frac{2}{{3 - 2x}} + \frac{{18}}{{9 - 4{x^2}}}\)

b) \(\frac{2}{{{a^2} - 1}} - \frac{1}{{a + 1}} - \frac{1}{{a - 1}}\)

c) \(\frac{{a + b}}{{a - b}} + \frac{{{a^2} - 4{b^2}}}{{{a^2} - {b^2}}} - \frac{{a - 3b}}{{a + b}}\)

d) \(\frac{x}{{{x^2} + xy}} - \frac{y}{{{x^2} - {y^2}}} + \frac{{x + y}}{{xy - {y^2}}}\)

Phương pháp giải - Xem chi tiết

Ta quy đồng mẫu thức rồi áp dụng quy tắc cộng, trừ các phân thức có cùng mẫu thức vừa tìm được.

Lời giải chi tiết

a)

\(\begin{array}{l}\frac{1}{{2x - 3}} - \frac{2}{{3 - 2x}} + \frac{{18}}{{9 - 4{x^2}}} = \frac{{ - \left( {3 + 2x} \right) - 2\left( {3 + 2x} \right) + 18}}{{9 - 4{x^2}}} = \frac{{ - 3 - 2x - 6 - 4x + 18}}{{9 - 4{x^2}}}\\ = \frac{{9 - 6x}}{{9 - 4{x^2}}} = \frac{{3\left( {3 - 2x} \right)}}{{\left( {3 - 2x} \right)\left( {3 + 2x} \right)}} = \frac{3}{{3 + 2x}}\end{array}\)

b)

\(\frac{2}{{{a^2} - 1}} - \frac{1}{{a + 1}} - \frac{1}{{a - 1}} = \frac{{2 - \left( {a - 1} \right) - \left( {a + 1} \right)}}{{\left( {a - 1} \right)\left( {a + 1} \right)}} = \frac{{2 - a + 1 - a - 1}}{{\left( {a - 1} \right)\left( {a + 1} \right)}} = \frac{{2\left( {1 - a} \right)}}{{\left( {a - 1} \right)\left( {a + 1} \right)}} = \frac{{ - 2}}{{a + 1}}\)

c)

\(\begin{array}{l}\frac{{a + b}}{{a - b}} + \frac{{{a^2} - 4{b^2}}}{{{a^2} - {b^2}}} - \frac{{a - 3b}}{{a + b}} = \frac{{{a^2} + 2ab + {b^2}}}{{{a^2} - {b^2}}} + \frac{{{a^2} - 4{b^2}}}{{{a^2} - {b^2}}} - \frac{{{a^2} - 4ab + 3{b^2}}}{{{a^2} - {b^2}}}\\ = \frac{{{a^2} + 6ab - 6{b^2}}}{{{a^2} - {b^2}}}\end{array}\)

d)

\(\begin{array}{l}\frac{x}{{{x^2} + xy}} - \frac{y}{{{x^2} - {y^2}}} + \frac{{x + y}}{{xy - {y^2}}} = \frac{x}{{x\left( {x + y} \right)}} - \frac{y}{{\left( {x + y} \right)\left( {x - y} \right)}} + \frac{{x + y}}{{y\left( {x - y} \right)}}\\ = \frac{{xy\left( {x - y} \right)}}{{xy\left( {{x^2} - {y^2}} \right)}} - \frac{{x{y^2}}}{{xy\left( {{x^2} - {y^2}} \right)}} + \frac{{x{{\left( {x + y} \right)}^2}}}{{xy\left( {{x^2} - {y^2}} \right)}}\\ = \frac{{{x^2}y - x{y^2} - x{y^2} + {x^3} + 2{x^2}y + x{y^2}}}{{xy\left( {{x^2} - {y^2}} \right)}}\\ = \frac{{{x^3} + {x^2}y - x{y^2}}}{{xy\left( {{x^2} - {y^2}} \right)}} = \frac{{{x^2} + xy - {y^2}}}{{y\left( {{x^2} - {y^2}} \right)}}\end{array}\)


Cùng chủ đề:

Giải bài 2. 10 trang 38 SGK Toán 8 - Cùng khám phá
Giải bài 2. 11 trang 45 SGK Toán 8 - Cùng khám phá
Giải bài 2. 12 trang 45 SGK Toán 8 - Cùng khám phá
Giải bài 2. 13 trang 46 SGK Toán 8 - Cùng khám phá
Giải bài 2. 14 trang 46 SGK Toán 8 - Cùng khám phá
Giải bài 2. 15 trang 46 SGK Toán 8 - Cùng khám phá
Giải bài 2. 16 trang 46 SGK Toán 8 - Cùng khám phá
Giải bài 2. 17 trang 46 SGK Toán 8 - Cùng khám phá
Giải bài 2. 18 trang 46 SGK Toán 8 - Cùng khám phá
Giải bài 2. 19 trang 50 SGK Toán 8 - Cùng khám phá
Giải bài 2. 20 trang 50 SGK Toán 8 - Cùng khám phá