Giải bài 2 trang 111 vở thực hành Toán 9 tập 2 — Không quảng cáo

Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT Bài tập cuối chương IX trang 110, 111, 112 Vở thực hành


Giải bài 2 trang 111 vở thực hành Toán 9 tập 2

Cho tam giác ABC nội tiếp đường tròn (O). Gọi M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB. Chứng minh rằng các tứ giác ANOP, BPOM, CMON là các tứ giác nội tiếp.

Đề bài

Cho tam giác ABC nội tiếp đường tròn (O). Gọi M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB. Chứng minh rằng các tứ giác ANOP, BPOM, CMON là các tứ giác nội tiếp

Phương pháp giải - Xem chi tiết

+ Chứng minh OP, ON, OM lần lượt là các đường cao của các tam giác AOB, AOC, BOC.

+ Tứ giác ANOP có \(\widehat {ANO} = \widehat {APO} = {90^0}\) nên tứ giác ANOP nội tiếp đường tròn có tâm là trung điểm của AO và bán kính bằng \(\frac{{AO}}{2}\).

+ Chứng minh tương tự ta có BPOM, CMON cũng là các tứ giác nội tiếp.

Lời giải chi tiết

Do các tam giác AOB, AOC, BOC đều cân tại O nên OP, ON, OM lần lượt là các đường cao của các tam giác này.

Do vậy, tứ giác ANOP có \(\widehat {ANO} = \widehat {APO} = {90^0}\). Do vậy tứ giác ANOP nội tiếp đường tròn có tâm là trung điểm của AO và bán kính bằng \(\frac{{AO}}{2}\). Tương tự BPOM, CMON cũng là các tứ giác nội tiếp.


Cùng chủ đề:

Giải bài 2 trang 102 vở thực hành Toán 9
Giải bài 2 trang 103, 104 vở thực hành Toán 9 tập 2
Giải bài 2 trang 106 vở thực hành Toán 9
Giải bài 2 trang 106 vở thực hành Toán 9 tập 2
Giải bài 2 trang 108 vở thực hành Toán 9
Giải bài 2 trang 111 vở thực hành Toán 9 tập 2
Giải bài 2 trang 113 vở thực hành Toán 9
Giải bài 2 trang 116 vở thực hành Toán 9 tập 2
Giải bài 2 trang 117 vở thực hành Toán 9
Giải bài 2 trang 119, 120 vở thực hành Toán 9
Giải bài 2 trang 120 vở thực hành Toán 9 tập 2