Giải bài 2 trang 57 sách bài tập toán 11 - Chân trời sáng tạo tập 1 — Không quảng cáo

SBT Toán 11 - Giải SBT Toán 11 - Chân trời sáng tạo Bài 1. Dãy số - SBT Toán 11 CTST


Giải bài 2 trang 57 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Dự đoán công thức số hạng tổng quát của dãy số \(\left( {{u_n}} \right)\), biết \(\left\{ \begin{array}{l}{u_1} = - 2\\{u_{n + 1}} = - 2 - \frac{1}{{{u_n}}}\end{array} \right.\).

Đề bài

Dự đoán công thức số hạng tổng quát của dãy số \(\left( {{u_n}} \right)\), biết \(\left\{ \begin{array}{l}{u_1} =  - 2\\{u_{n + 1}} =  - 2 - \frac{1}{{{u_n}}}\end{array} \right.\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về cách xác định dãy số bằng công thức số hạng tổng quát \({u_n}\) để dự đoán số hạng tổng quát của dãy số: Tính một vài số hạng đầu tiên của dãy số \(\left( {{u_n}} \right)\) rồi từ đó dự đoán công thức \({u_n}\) theo n.

Lời giải chi tiết

Ta có: \({u_1} =  - 2 = \frac{{ - 2}}{1};\)\({u_2} =  - 2 - \frac{1}{{ - 2}} = \frac{{ - 3}}{2};\)\({u_3} =  - 2 - \frac{1}{{\frac{{ - 3}}{2}}} = \frac{{ - 4}}{3};\)\({u_4} =  - 2 - \frac{1}{{\frac{{ - 4}}{3}}} = \frac{{ - 5}}{4}\)

Do đó, dự đoán công thức số hạng tổng quát của dãy số \(\left( {{u_n}} \right)\) là: \({u_n} =  - \frac{{n + 1}}{n}\).


Cùng chủ đề:

Giải bài 2 trang 38 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 2 trang 43 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 2 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 2 trang 51 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 2 trang 55 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 2 trang 57 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 2 trang 60 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 2 trang 61 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 2 trang 63 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 2 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 2 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2