Loading [MathJax]/jax/output/CommonHTML/jax.js

Giải bài 2 trang 57 sách bài tập toán 11 - Chân trời sáng tạo tập 1 — Không quảng cáo

SBT Toán 11 - Giải SBT Toán 11 - Chân trời sáng tạo Bài 1. Dãy số - SBT Toán 11 CTST


Giải bài 2 trang 57 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Dự đoán công thức số hạng tổng quát của dãy số (un), biết {u1=2un+1=21un.

Đề bài

Dự đoán công thức số hạng tổng quát của dãy số (un), biết {u1=2un+1=21un.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về cách xác định dãy số bằng công thức số hạng tổng quát un để dự đoán số hạng tổng quát của dãy số: Tính một vài số hạng đầu tiên của dãy số (un) rồi từ đó dự đoán công thức un theo n.

Lời giải chi tiết

Ta có: u1=2=21;u2=212=32;u3=2132=43;u4=2143=54

Do đó, dự đoán công thức số hạng tổng quát của dãy số (un) là: un=n+1n.


Cùng chủ đề:

Giải bài 2 trang 38 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 2 trang 43 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 2 trang 45 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 2 trang 51 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 2 trang 55 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 2 trang 57 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 2 trang 60 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 2 trang 61 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 2 trang 63 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 2 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 2 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2