Giải bài 2 trang 70 SGK Toán 10 tập 2 – Chân trời sáng tạo
Viết phương trình chính tắc của các đường conic dưới đây. Gọi tên và tìm tọa độ của các tiêu điểm của chúng
Đề bài
Viết phương trình chính tắc của các đường conic dưới đây. Gọi tên và tìm tọa độ của các tiêu điểm của chúng
a) \(({C_1}):4{x^2} + 16{y^2} = 1\)
b) \(({C_2}):16{x^2} - 4{y^2} = 144\)
c) \(({C_3}):x = \frac{1}{8}{y^2}\)
Phương pháp giải - Xem chi tiết
Bước 1: Xác định dạng phương trình của đường conic nào
+) Có dạng \(a{x^2} + b{y^2} = 1\) là dạng đường elip
+) Có dạng \(a{x^2} - b{y^2} = 1\) là dạng đường hypebol
+) Có dạng \({y^2} = ax\) là dạng đường parabol
Bước 2: Đưa về phương trình chính tắc và tìm tọa độ biết phương trình chính tắc có dạng
+) \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) là đường elip
+) \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) là đường hypebol
+) \({y^2} = 2px\) là đường parabol
Bước 3: Xác định tiêu điểm của các đường conic
+) Elip: \({F_1}\left( { - c;0} \right)\) và \({F_2}\left( {c;0} \right)\)
+) Hypebol: \({F_1}\left( { - c;0} \right)\) và \({F_2}\left( {c;0} \right)\)
+) Parabol: \(F\left( {\frac{p}{2};0} \right)\)
Lời giải chi tiết
a) Ta thấy phương trình có dạng \(a{x^2} + b{y^2} = 1\) nên phương trình \(({C_1}):4{x^2} + 16{y^2} = 1\) là phương trình của đường elip
Từ phương trình \(({C_1}):4{x^2} + 16{y^2} = 1\) ta có phương trình chính tắc là \(({C_1}):\frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{1}{{16}}}} = 1\)
Từ phương trình chính tắc ta có: \(a = \frac{1}{2},b = \frac{1}{4} \Rightarrow c = \sqrt {{a^2} - {b^2}} = \sqrt {{{\left( {\frac{1}{2}} \right)}^2} - {{\left( {\frac{1}{4}} \right)}^2}} = \frac{{\sqrt 3 }}{4}\)
Suy ra tiêu điểm của elip này là \({F_1}\left( { - \frac{{\sqrt 3 }}{4};0} \right)\) và \({F_2}\left( {\frac{{\sqrt 3 }}{4};0} \right)\)
b) Ta thấy phương trình có dạng \(a{x^2} - b{y^2} = 1\) nên phương trình \(({C_2}):16{x^2} - 4{y^2} = 144\) là phương trình của đường hypebol
Từ phương trình \(({C_2}):16{x^2} - 4{y^2} = 144\) ta có phương trình chính tắc là \(({C_1}):\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{36}} = 1\)
Từ phương trình chính tắc ta có: \(a = 3,b = 6 \Rightarrow c = \sqrt {{a^2} + {b^2}} = \sqrt {{3^2} + {6^2}} = 3\sqrt 5 \)
Suy ra tiêu điểm của hypebol này là \({F_1}\left( { - 3\sqrt 5;0} \right)\) và \({F_2}\left( {3\sqrt 5;0} \right)\)
c) Phương trình \(({C_3}):x = \frac{1}{8}{y^2}\) có dạng \({y^2} = ax\) nên phương trình này là phương trình của parabol
Ta có phương trình chính tắc là \({y^2} = 8x\)
Từ phương trình chính tắc ta có: \(2p = 8 \Rightarrow p = 4\)
Suy ra tiêu điểm là \(F(2;0)\)