Giải bài 2 trang 70 SGK Toán 10 tập 2 – Chân trời sáng tạo — Không quảng cáo

Toán 10, giải toán lớp 10 chân trời sáng tạo Bài 4. Ba đường conic trong mặt phẳng tọa độ Toán 10 Ch


Giải bài 2 trang 70 SGK Toán 10 tập 2 – Chân trời sáng tạo

Viết phương trình chính tắc của các đường conic dưới đây. Gọi tên và tìm tọa độ của các tiêu điểm của chúng

Đề bài

Viết phương trình chính tắc của các đường conic dưới đây. Gọi tên và tìm tọa độ của các tiêu điểm của chúng

a) \(({C_1}):4{x^2} + 16{y^2} = 1\)

b) \(({C_2}):16{x^2} - 4{y^2} = 144\)

c) \(({C_3}):x = \frac{1}{8}{y^2}\)

Phương pháp giải - Xem chi tiết

Bước 1: Xác định dạng phương trình của đường conic nào

+) Có dạng \(a{x^2} + b{y^2} = 1\) là dạng đường elip

+) Có dạng \(a{x^2} - b{y^2} = 1\) là dạng đường hypebol

+) Có dạng \({y^2} = ax\) là dạng đường parabol

Bước 2: Đưa về phương trình chính tắc và tìm tọa độ biết phương trình chính tắc có dạng

+) \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) là đường elip

+) \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) là đường hypebol

+) \({y^2} = 2px\) là đường parabol

Bước 3: Xác định tiêu điểm của các đường conic

+) Elip: \({F_1}\left( { - c;0} \right)\) và \({F_2}\left( {c;0} \right)\)

+) Hypebol: \({F_1}\left( { - c;0} \right)\) và \({F_2}\left( {c;0} \right)\)

+) Parabol: \(F\left( {\frac{p}{2};0} \right)\)

Lời giải chi tiết

a) Ta thấy phương trình có dạng \(a{x^2} + b{y^2} = 1\) nên phương trình \(({C_1}):4{x^2} + 16{y^2} = 1\) là phương trình của đường elip

Từ phương trình \(({C_1}):4{x^2} + 16{y^2} = 1\) ta có phương trình chính tắc là \(({C_1}):\frac{{{x^2}}}{{\frac{1}{4}}} + \frac{{{y^2}}}{{\frac{1}{{16}}}} = 1\)

Từ phương trình chính tắc ta có: \(a = \frac{1}{2},b = \frac{1}{4} \Rightarrow c = \sqrt {{a^2} - {b^2}}  = \sqrt {{{\left( {\frac{1}{2}} \right)}^2} - {{\left( {\frac{1}{4}} \right)}^2}}  = \frac{{\sqrt 3 }}{4}\)

Suy ra tiêu điểm của elip này là \({F_1}\left( { - \frac{{\sqrt 3 }}{4};0} \right)\) và \({F_2}\left( {\frac{{\sqrt 3 }}{4};0} \right)\)

b) Ta thấy phương trình có dạng \(a{x^2} - b{y^2} = 1\) nên phương trình \(({C_2}):16{x^2} - 4{y^2} = 144\) là phương trình của đường hypebol

Từ phương trình \(({C_2}):16{x^2} - 4{y^2} = 144\) ta có phương trình chính tắc là \(({C_1}):\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{36}} = 1\)

Từ phương trình chính tắc ta có: \(a = 3,b = 6 \Rightarrow c = \sqrt {{a^2} + {b^2}}  = \sqrt {{3^2} + {6^2}}  = 3\sqrt 5 \)

Suy ra tiêu điểm của hypebol này là \({F_1}\left( { - 3\sqrt 5;0} \right)\) và \({F_2}\left( {3\sqrt 5;0} \right)\)

c) Phương trình \(({C_3}):x = \frac{1}{8}{y^2}\) có dạng \({y^2} = ax\) nên phương trình này là phương trình của parabol

Ta có phương trình chính tắc là \({y^2} = 8x\)

Từ phương trình chính tắc ta có: \(2p = 8 \Rightarrow p = 4\)

Suy ra tiêu điểm là \(F(2;0)\)


Cùng chủ đề:

Giải bài 2 trang 56 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 2 trang 57 SGK Toán 10 tập 2 – Chân trời sáng tạo
Giải bài 2 trang 59 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 2 trang 62 SGK Toán 10 tập 2 – Chân trời sáng tạo
Giải bài 2 trang 65 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 2 trang 70 SGK Toán 10 tập 2 – Chân trời sáng tạo
Giải bài 2 trang 72 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 2 trang 73 SGK Toán 10 tập 2 – Chân trời sáng tạo
Giải bài 2 trang 77 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 2 trang 78 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 2 trang 80 SGK Toán 10 tập 2 – Chân trời sáng tạo