Giải bài 22 trang 51 sách bài tập toán 12 - Kết nối tri thức
Gieo hai con xúc xắc cân đối, đồng chất. Biết rằng số chấm trên hai con xúc xắc bé hơn 5. Xác suất để tổng số chấm bằng 6 là A. (frac{3}{{17}}). B. (frac{4}{{17}}). C. (frac{5}{{19}}). D. (frac{3}{{16}}).
Đề bài
Gieo hai con xúc xắc cân đối, đồng chất. Biết rằng số chấm trên hai con xúc xắc bé hơn 5. Xác suất để tổng số chấm bằng 6 là
A. \(\frac{3}{{17}}\).
B. \(\frac{4}{{17}}\).
C. \(\frac{5}{{19}}\).
D. \(\frac{3}{{16}}\).
Phương pháp giải - Xem chi tiết
Xác định các biến cố, áp dụng công thức xác suất có điều kiện.
Lời giải chi tiết
Gọi A là biến cố: “Tổng số chấm bằng 6”; B là biến cố: “Số chấm trên hai con xúc xắc bé hơn 5”. Ta cần tính \(P\left( {A|B} \right)\).
Ta có \(B = \left\{ \begin{array}{l}\left( {1;1} \right);\left( {1;2} \right);\left( {1;3} \right);\left( {1;4} \right);\left( {2;1} \right);\left( {2;2} \right);\left( {2;3} \right);\left( {2;4} \right);\left( {3;1} \right);\left( {3;2} \right);\left( {3;3} \right);\\\left( {3;3} \right);\left( {4;1} \right);\left( {4;2} \right);\left( {4;3} \right);\left( {4;4} \right)\end{array} \right\}\)
suy ra \(n\left( B \right) = 16\); \(AB = A \cap B = \left\{ {\left( {2;4} \right);\left( {4;2} \right);\left( {3;3} \right)} \right\}\) suy ra \(n\left( {AB} \right) = 3\).
Do đó \(P\left( B \right) = \frac{{16}}{{36}}\), \(P\left( {AB} \right) = \frac{3}{{36}}\) suy ra \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{3}{{16}}\).
Đáp án D.