Giải bài 22 trang 67 sách bài tập toán 8 – Cánh diều
Cho tam giác \(ABC\) có chu vi bằng 74 cm. Đường phân giác của góc \(A\) chia cạnh \(BC\) thành hai đoạn \(BD\) và \(DC\) tỉ lệ với 2 và 3,
Đề bài
Cho tam giác \(ABC\) có chu vi bằng 74 cm. Đường phân giác của góc \(A\) chia cạnh \(BC\) thành hai đoạn \(BD\) và \(DC\) tỉ lệ với 2 và 3, đường phân giác của góc \(C\) chia cạnh \(AB\) thành hai đoạn \(EB\) và \(EA\) tỉ lệ với 4 và 5. Tính độ dài các cạnh của tam giác \(ABC\).
Phương pháp giải - Xem chi tiết
Tính chất đường phân giác của tam giác: trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy.
Lời giải chi tiết
Ta có:
\(\frac{{AB}}{{AC}} = \frac{{BD}}{{DC}} = \frac{2}{3}\), suy ra \(\frac{{AB}}{2} = \frac{{AC}}{3}\) (1)
\(\frac{{BC}}{{AC}} = \frac{{EB}}{{EA}} = \frac{4}{5}\), suy ra \(\frac{{BC}}{4} = \frac{{AC}}{5}\) (2)
Từ (1) và (2) suy ra: \(\frac{{AB}}{{10}} = \frac{{BC}}{{12}} = \frac{{AC}}{{15}}\).
Do đó: \(\frac{{AB}}{{10}} = \frac{{BC}}{{12}} = \frac{{AC}}{{15}} = \frac{{AB + BC + AC}}{{10 + 12 + 15}} = \frac{{74}}{{37}} = 2\).
Vậy: \(AB = 20cm,BC = 24cm,AC = 30cm\).