Giải bài 3. 9 trang 52 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống — Không quảng cáo

Giải chuyên đề học tập Toán lớp 10 Kết nối tri thức Bài 6. Hypebol Chuyên đề học tập Toán 10 kết nối tri thức


Giải bài 3.9 trang 52 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống

Trong mặt phẳng tọa độ Oxy, cho hypebol (H) có phương trình chính tắc. Lập phương trình chính tắc của (H) trong mỗi trường hợp sau:

Đề bài

Trong mặt phẳng tọa độ Oxy, cho hypebol (H) có phương trình chính tắc. Lập phương trình chính tắc của (H) trong mỗi trường hợp sau:

a) (H) có nửa khung thực tế bằng 4, tiêu cự bằng 10.

b) (H) có tiêu cự bằng \(2\sqrt {13} \), một đường tiệm cận là \(y = \frac{2}{3}x\).

c) (H) có tâm sai bằng \(e = \sqrt 5 \), và đi qua điểm \((\sqrt {10} ;6)\).

Phương pháp giải - Xem chi tiết

PTCT của hypebol \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\).

+ Độ dài nửa trục bằng a.

+ Tiêu cự bằng \(2c = 2\sqrt {{a^2} + {b^2}} \).

+ Hai đường tiệm cận \(y =  \pm \frac{b}{a}x\).

+ Tâm sai của hypebol: \(e = \frac{c}{a}\).

Lời giải chi tiết

a)

+ Độ dài nửa trục bằng 4 \( \Rightarrow a = 4\) .

+ Tiêu cự bằng \(10 = 2c = 2\sqrt {{a^2} + {b^2}} \)

\(\begin{array}{l} \Leftrightarrow 10 = 2\sqrt {{4^2} + {b^2}} \\ \Leftrightarrow \sqrt {{4^2} + {b^2}}  = 5\\ \Leftrightarrow {4^2} + {b^2} = 25\\ \Leftrightarrow {b^2} = 9\\ \Rightarrow b = 3.\end{array}\)

PTCT của hypebol

\(\frac{{{x^2}}}{{{4^2}}} - \frac{{{y^2}}}{{{3^2}}} = 1 \Leftrightarrow \frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1.\)

b)

+ Tiêu cự bằng \(2\sqrt {13}  = 2c \Rightarrow c = \sqrt {13} .\)

+ Ta có: \(2\sqrt {13}  = 2c = 2\sqrt {{a^2} + {b^2}} \)

\(\begin{array}{l} \Leftrightarrow \sqrt {13}  = \sqrt {{a^2} + {b^2}} \\ \Leftrightarrow {a^2} + {b^2} = 13.\end{array}\)

Đường tiệm cận \(y = \frac{2}{3}x = \frac{b}{a}x \Rightarrow \frac{b}{a} = \frac{2}{3}.\)

\( \Leftrightarrow \frac{a}{3} = \frac{b}{2} \Leftrightarrow \frac{{{a^2}}}{9} = \frac{{{b^2}}}{4} = \frac{{{a^2} + {b^2}}}{{13}} = \frac{{13}}{{13}} = 1.\)

\( \Rightarrow a = 3,b = 2.\)

PTCT của hypebol

\(\frac{{{x^2}}}{{{3^2}}} - \frac{{{y^2}}}{{{2^2}}} = 1 \Leftrightarrow \frac{{{x^2}}}{9} - \frac{{{y^2}}}{4} = 1.\)

c,

+ Tâm sai của hypebol: \(e = \frac{c}{a} = \sqrt 5  \Leftrightarrow c = a\sqrt 5  = \sqrt {{a^2} + {b^2}} \)

\( \Leftrightarrow {a^2} + {b^2} = 5{a^2} \Rightarrow {b^2} = 4{a^2}\) (1).

+ Hypebol đi qua điểm \((\sqrt {10} ;6)\) nên ta có: \(\frac{{{{(\sqrt {10} )}^2}}}{{{a^2}}} - \frac{{{6^2}}}{{{b^2}}} = 1\) (2).

Thay (1) vào (2) ta có:

\(\frac{{10}}{{{a^2}}} - \frac{{36}}{{4{a^2}}} = 1 \Leftrightarrow \frac{{10}}{{{a^2}}} - \frac{9}{{{a^2}}} = 1\)

\( \Leftrightarrow \frac{1}{{{a^2}}} = 1 \Rightarrow a = 1 \Rightarrow {b^2} = 4 \Rightarrow b = 2.\)

PTCT của hypebol

\(\frac{{{x^2}}}{{{1^2}}} - \frac{{{y^2}}}{{{2^2}}} = 1 \Leftrightarrow {x^2} - \frac{{{y^2}}}{4} = 1.\)

+ Độ dài nửa trục bằng 4 \( \Rightarrow a = 4\) .

+ Tiêu cự bằng \(10 = 2c = 2\sqrt {{a^2} + {b^2}} \)

\(\begin{array}{l} \Leftrightarrow 10 = 2\sqrt {{4^2} + {b^2}} \\ \Leftrightarrow \sqrt {{4^2} + {b^2}}  = 5\\ \Leftrightarrow {4^2} + {b^2} = 25\\ \Leftrightarrow {b^2} = 9\\ \Rightarrow b = 3.\end{array}\)

PTCT của hypebol : \(\frac{{{x^2}}}{{{4^2}}} - \frac{{{y^2}}}{{{3^2}}} = 1 \Leftrightarrow \frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1.\)

b)

+ Tiêu cự bằng \(2\sqrt {13}  = 2c \Rightarrow c = \sqrt {13} .\)

+ Ta có: \(2\sqrt {13}  = 2c = 2\sqrt {{a^2} + {b^2}} \)

\(\begin{array}{l} \Leftrightarrow \sqrt {13}  = \sqrt {{a^2} + {b^2}} \\ \Leftrightarrow {a^2} + {b^2} = 13.\end{array}\)

Đường tiệm cận \(y = \frac{2}{3}x = \frac{b}{a}x \Rightarrow \frac{b}{a} = \frac{2}{3}.\)

\( \Leftrightarrow \frac{a}{3} = \frac{b}{2} \Leftrightarrow \frac{{{a^2}}}{9} = \frac{{{b^2}}}{4} = \frac{{{a^2} + {b^2}}}{{13}} = \frac{{13}}{{13}} = 1.\)

\( \Rightarrow a = 3,b = 2.\)

PTCT của hypebol : \(\frac{{{x^2}}}{{{3^2}}} - \frac{{{y^2}}}{{{2^2}}} = 1 \Leftrightarrow \frac{{{x^2}}}{9} - \frac{{{y^2}}}{4} = 1.\)

c,


Cùng chủ đề:

Giải bài 3. 4 trang 45 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống
Giải bài 3. 5 trang 45 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống
Giải bài 3. 6 trang 45 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống
Giải bài 3. 7 trang 52 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống
Giải bài 3. 8 trang 52 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống
Giải bài 3. 9 trang 52 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống
Giải bài 3. 10 trang 52 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống
Giải bài 3. 11 trang 52 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống
Giải bài 3. 12 trang 53 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống
Giải bài 3. 13 trang 56 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống
Giải bài 3. 14 trang 56 Chuyên đề học tập Toán 10 - Kết nối tri thức với cuộc sống