Giải bài 3 trang 130 vở thực hành Toán 9 tập 2 — Không quảng cáo

Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT Bài tập ôn tập cuối năm


Giải bài 3 trang 130 vở thực hành Toán 9 tập 2

Giải các bất phương trình sau: a) ( - 6x + 3left( {x + 1} right) > 4x - left( {x - 4} right)); b) (left( {2x + 1} right)left( {2x - 1} right) < 4{x^2} - 4x + 1).

Đề bài

Giải các bất phương trình sau:

a) \( - 6x + 3\left( {x + 1} \right) > 4x - \left( {x - 4} \right)\);

b) \(\left( {2x + 1} \right)\left( {2x - 1} \right) < 4{x^2} - 4x + 1\).

Phương pháp giải - Xem chi tiết

+ Đưa bất phương trình về dạng bất phương trình bậc nhất một ẩn \(ax + b < 0\left( {a \ne 0} \right)\).

+ Bất phương trình \(ax + b < 0\left( {a \ne 0} \right)\) được giải như sau:

\(ax + b < 0\)

\(ax <  - b\)

Nếu \(a > 0\) thì \(x <  - \frac{b}{a}\).

Nếu \(a < 0\) thì \(x >  - \frac{b}{a}\).

Bất phương trình \(ax + b > 0\left( {a \ne 0} \right)\) ta giải tương tự.

Lời giải chi tiết

a) \( - 6x + 3\left( {x + 1} \right) > 4x - \left( {x - 4} \right)\)

\( - 6x + 3x + 3 > 4x - x + 4\)

\( - 6x + 3x - 4x + x > 4 - 3\)

\( - 6x > 1\)

\(x < \frac{{ - 1}}{6}\).

b) \(\left( {2x + 1} \right)\left( {2x - 1} \right) < 4{x^2} - 4x + 1\)

\(4{x^2} - 1 < 4{x^2} - 4x + 1\)

\(4{x^2} - 4{x^2} + 4x < 1 + 1\)

\(4x < 2\)

\(x < \frac{1}{2}\).


Cùng chủ đề:

Giải bài 3 trang 117, 118 vở thực hành Toán 9
Giải bài 3 trang 120, 121 vở thực hành Toán 9
Giải bài 3 trang 120, 121 vở thực hành Toán 9 tập 2
Giải bài 3 trang 122, 123 vở thực hành Toán 9 tập 2
Giải bài 3 trang 125, 126 vở thực hành Toán 9 tập 2
Giải bài 3 trang 130 vở thực hành Toán 9 tập 2
Giải bài 4 trang 7 vở thực hành Toán 9 tập 2
Giải bài 4 trang 8 vở thực hành Toán 9
Giải bài 4 trang 13 vở thực hành Toán 9
Giải bài 4 trang 13 vở thực hành Toán 9 tập 2
Giải bài 4 trang 17 vở thực hành Toán 9