Giải bài 3 trang 32 vở thực hành Toán 9 — Không quảng cáo

Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT Bài 4. Phương trình quy về phương trình bậc nhất một ẩn


Giải bài 3 trang 32 vở thực hành Toán 9

Giải các phương trình sau: a) (frac{2}{{2x + 1}} + frac{1}{{x + 1}} = frac{3}{{left( {2x + 1} right)left( {x + 1} right)}}); b) (frac{1}{{x + 1}} - frac{x}{{{x^2} - x + 1}} = frac{{3x}}{{{x^3} + 1}}).

Đề bài

Giải các phương trình sau:

a) \(\frac{2}{{2x + 1}} + \frac{1}{{x + 1}} = \frac{3}{{\left( {2x + 1} \right)\left( {x + 1} \right)}}\);

b) \(\frac{1}{{x + 1}} - \frac{x}{{{x^2} - x + 1}} = \frac{{3x}}{{{x^3} + 1}}\).

Phương pháp giải - Xem chi tiết

Để giải phương trình chứa ẩn ở mẫu ta thường thực hiện các bước như sau:

Bước 1. Tìm điều kiện xác định của phương trình.

Bước 2. Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

Bước 3. Giải phương trình vừa tìm được.

Bước 4 (Kết luận). Trong các giá trị tìm được của ẩn ở Bước 3, giá trị nào thỏa mãn điều kiện xác định chính là nghiệm của phương trình đã cho.

Lời giải chi tiết

a) ĐKXĐ: \(x \ne  - \frac{1}{2}\) và \(x \ne  - 1\).

Quy đồng mẫu hai vế, ta có

\(\frac{{2\left( {x + 1} \right) + 2x + 1}}{{\left( {2x + 1} \right)\left( {x + 1} \right)}} = \frac{3}{{\left( {2x + 1} \right)\left( {x + 1} \right)}}\)

\(\frac{{4x + 3}}{{\left( {2x + 1} \right)\left( {x + 1} \right)}} = \frac{3}{{\left( {2x + 1} \right)\left( {x + 1} \right)}}\)

Suy ra, \(4x + 3 = 3\) hay \(x = 0\).

Kết hợp với điều kiện, nghiệm của phương trình là \(x = 0\).

b) ĐKXĐ: \(x \ne  - 1\).

Quy đồng mẫu hai vế, ta có

\(\frac{{{x^2} - x + 1 - x\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{{3x}}{{{x^3} + 1}}\)

\(\frac{{{x^2} - x + 1 - {x^2} - x}}{{{x^3} + 1}} = \frac{{3x}}{{{x^3} + 1}}\), do đó \(\frac{{ - 2x + 1}}{{{x^3} + 1}} = \frac{{3x}}{{{x^3} + 1}}\)

Suy ra, \( - 2x + 1 = 3x\) hay \(x = \frac{1}{5}\).

Kết hợp với điều kiện, nghiệm của phương trình là \(x = \frac{1}{5}\).


Cùng chủ đề:

Giải bài 3 trang 17 vở thực hành Toán 9
Giải bài 3 trang 21 vở thực hành Toán 9
Giải bài 3 trang 22 vở thực hành Toán 9 tập 2
Giải bài 3 trang 26, 27 vở thực hành Toán 9 tập 2
Giải bài 3 trang 30 vở thực hành Toán 9 tập 2
Giải bài 3 trang 32 vở thực hành Toán 9
Giải bài 3 trang 35 vở thực hành Toán 9 tập 2
Giải bài 3 trang 37 vở thực hành Toán 9
Giải bài 3 trang 39 vở thực hành Toán 9
Giải bài 3 trang 41 vở thực hành Toán 9 tập 2
Giải bài 3 trang 42 vở thực hành Toán 9