Giải bài 3 trang 17 vở thực hành Toán 9 — Không quảng cáo

Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT Luyện tập chung trang 16 trang 16, 17, 18 Vở thực hành


Giải bài 3 trang 17 vở thực hành Toán 9

Cho hình chóp tam giác đều có cạnh đáy là tam giác đều cạnh a (cm) và chiều cao 10cm. a) Tính diện tích đáy S của hình chóp theo a. b) Từ kết quả câu a, tính thể tích V của hình chóp theo a và tính giá trị của V khi (a = 4cm). c) Nếu độ dài cạnh đáy giảm đi hai lần thì thể tích hình chóp thay đổi thế nào?

Đề bài

Cho hình chóp tam giác đều có cạnh đáy là tam giác đều cạnh a (cm) và chiều cao 10cm.

a) Tính diện tích đáy S của hình chóp theo a.

b) Từ kết quả câu a, tính thể tích V của hình chóp theo a và tính giá trị của V khi \(a = 4cm\).

c) Nếu độ dài cạnh đáy giảm đi hai lần thì thể tích hình chóp thay đổi thế nào?

Phương pháp giải - Xem chi tiết

a) Áp dụng định lí Pythagore, ta tính được chiều cao của tam giác đều cạnh a.

b) Thể tích của hình chóp tam giác đều là: \(V = \frac{1}{3}S.h\).

c) + Tính chiều cao mới của đáy hình chóp theo a.

+ Tính diện tích đáy hình chóp mới bằng bao nhiêu lần diện tích đáy hình chóp cũ.

+ Tính thể tích hình chóp mới bằng bao nhiêu lần thể tích hình chóp cũ.

Lời giải chi tiết

a) Áp dụng định lí Pythagore, ta tính được chiều cao của tam giác đều cạnh a là:

\({h_1} = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}}  = \sqrt {\frac{{3{a^2}}}{4}}  = \frac{{a\sqrt 3 }}{2}\left( {cm} \right)\).

Diện tích đáy S của hình chóp là:

\(S = \frac{1}{2}a.{h_1} = \frac{1}{2}a.\frac{{a\sqrt 3 }}{2} = \frac{{{a^2}\sqrt 3 }}{4}\left( {c{m^2}} \right)\).

b) Thể tích của hình chóp tam giác đều là:

\(V = \frac{1}{3}S.h = \frac{1}{3}.\frac{{{a^2}\sqrt 3 }}{4}.10 = \frac{{5\sqrt 3 }}{6}{a^2}\left( {c{m^3}} \right)\).

Thay a = 4 cm, ta được \(S = \frac{{5\sqrt 3 }}{6}{4^2} = \frac{40\sqrt 3}{3} \left( {c{m^3}} \right)\).

c) Chiều cao mới của đáy là:

h mới \( = \sqrt {{{\left( {\frac{a}{2}} \right)}^2} - {{\left( {\frac{a}{4}} \right)}^2}} \)

\(= \sqrt {\frac{{{a^2}}}{4} - \frac{{{a^2}}}{{16}}}  = \frac{{a\sqrt 3 }}{4}\left( {cm} \right)\).

Diện tích đáy mới là:

S mới \( = \frac{1}{2}.\frac{a}{2}.\frac{{a\sqrt 3 }}{4} = \frac{1}{4}.\frac{{{a^2}\sqrt 3 }}{4} = \frac{1}{4}\).S .

Suy ra V mới \( = \frac{1}{3}\).S mới .h\( = \frac{1}{3}.\frac{1}{4}\).S .h\( = \frac{1}{4}\).V

Vậy nếu độ dài cạnh đáy giảm đi hai lần thì thể tích hình chóp giảm đi 4 lần.


Cùng chủ đề:

Giải bài 3 trang 6 vở thực hành Toán 9 tập 2
Giải bài 3 trang 7 vở thực hành Toán 9
Giải bài 3 trang 13 vở thực hành Toán 9
Giải bài 3 trang 13 vở thực hành Toán 9 tập 2
Giải bài 3 trang 16 vở thực hành Toán 9
Giải bài 3 trang 17 vở thực hành Toán 9
Giải bài 3 trang 21 vở thực hành Toán 9
Giải bài 3 trang 22 vở thực hành Toán 9 tập 2
Giải bài 3 trang 26, 27 vở thực hành Toán 9 tập 2
Giải bài 3 trang 30 vở thực hành Toán 9 tập 2
Giải bài 3 trang 32 vở thực hành Toán 9