Giải bài 3 trang 16 vở thực hành Toán 9 — Không quảng cáo

Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT Luyện tập chung trang 15 trang 15, 16, 17 Vở thực hành


Giải bài 3 trang 16 vở thực hành Toán 9

Giải các hệ phương trình sau bằng phương pháp thế: a) (left{ begin{array}{l}2x - y = 1\x - 2y = - 1end{array} right.); b) (left{ begin{array}{l}0,5x - 0,5y = 0,5\1,2x - 1,2y = 1,2end{array} right.); c) (left{ begin{array}{l}x + 3y = - 2\5x - 4y = 28end{array} right.).

Đề bài

Giải các hệ phương trình sau bằng phương pháp thế:

a) \(\left\{ \begin{array}{l}2x - y = 1\\x - 2y =  - 1\end{array} \right.\);

b) \(\left\{ \begin{array}{l}0,5x - 0,5y = 0,5\\1,2x - 1,2y = 1,2\end{array} \right.\);

c) \(\left\{ \begin{array}{l}x + 3y =  - 2\\5x - 4y = 28\end{array} \right.\).

Phương pháp giải - Xem chi tiết

Giải phương trình bằng phương pháp thế:

Bước 1: Từ một phương trình của hệ, biểu diễn một ẩn theo ẩn kia rồi thế vào phương trình còn lại của hệ để được phương trình chỉ còn chứa một ẩn.

Bước 2: Giải phương trình một ẩn vừa nhận được, từ đó suy ra nghiệm của hệ đã cho.

Lời giải chi tiết

a) Từ phương trình thứ nhất của hệ ta có \(y = 2x - 1\). Thế vào phương trình thứ hai của hệ, ta được \(x - 2\left( {2x - 1} \right) =  - 1\) hay \( - 3x + 2 =  - 1\), suy ra \(x = 1\).

Từ đó, \(y = 2.1 - 1 = 1\).

Vậy hệ phương trình đã cho có nghiệm là (1; 1).

b) Từ phương trình thứ nhất của hệ ta có \(y = x - 1\). Thế vào phương trình thứ hai của hệ, ta được \(1,2x - 1,2\left( {x - 1} \right) = 1,2\) hay \(0x = 0\).

Ta thấy mọi giá trị của x đều thỏa mãn hệ thức trên.

Với giá trị tùy ý của x, giá trị của y được tính nhờ hệ thức \(y = x - 1\).

Vậy hệ phương trình đã cho có nghiệm là \(\left( {x;x - 1} \right)\) với \(x \in \mathbb{R}\) tùy ý.

c) Từ phương trình thứ nhất của hệ ta có \(x =  - 3y - 2\). Thế vào phương trình thứ hai của hệ, ta được \(5\left( { - 3y - 2} \right) - 4y = 28\) hay \( - 19y - 10 = 28\), suy ra \(y =  - 2\).

Từ đó \(x =  - 3.\left( { - 2} \right) - 2 = 4\)

Vậy hệ phương trình đã cho có nghiệm là (4; -2).


Cùng chủ đề:

Giải bài 2 trang 129, 130 vở thực hành Toán 9 tập 2
Giải bài 3 trang 6 vở thực hành Toán 9 tập 2
Giải bài 3 trang 7 vở thực hành Toán 9
Giải bài 3 trang 13 vở thực hành Toán 9
Giải bài 3 trang 13 vở thực hành Toán 9 tập 2
Giải bài 3 trang 16 vở thực hành Toán 9
Giải bài 3 trang 17 vở thực hành Toán 9
Giải bài 3 trang 21 vở thực hành Toán 9
Giải bài 3 trang 22 vở thực hành Toán 9 tập 2
Giải bài 3 trang 26, 27 vở thực hành Toán 9 tập 2
Giải bài 3 trang 30 vở thực hành Toán 9 tập 2