Giải Bài 38 trang 81 sách bài tập toán 7 - Cánh diều
Cho ∆ABC = ∆A’B’C’. Vẽ AH vuông góc với BC tại H, A’H’ vuông góc với B’C’ tại H’. Chứng minh AH = A’H’.
Đề bài
Cho ∆ABC = ∆A’B’C’. Vẽ AH vuông góc với BC tại H, A’H’ vuông góc với B’C’ tại H’. Chứng minh AH = A’H’.
Phương pháp giải - Xem chi tiết
- Chứng minh: ΔABH=ΔA′B′H′ (cạnh huyền – góc nhọn)
- Suy ra: AH = A’H’.
Lời giải chi tiết
Do ∆ABC = ∆A’B’C’ (giả thiết)
Nên AB = A’B’ (hai cạnh tương ứng) và (hai góc tương ứng).
Xét ∆ABH và ∆AB’H’ có:
^AHB=^A′H′B′(=90∘)
AB = A’B’ (chứng minh trên),
^ABH=^A′B′H′ (do ^ABC=^A′B′C′)
Suy ra ∆ABH = ∆A’B’H’ (cạnh huyền – góc nhọn).
Do đó AH = A’H’ (hai cạnh tương ứng).
Vậy AH = A’H’.
Cùng chủ đề:
Giải Bài 38 trang 81 sách bài tập toán 7 - Cánh diều