Giải bài 4 trang 56 vở thực hành Toán 8 tập 2 — Không quảng cáo

Giải vth Toán 8, soạn vở thực hành Toán 8 KNTT Luyện tập chung trang 54 trang 54, 55, 56 Vở thực hành


Giải bài 4 trang 56 vở thực hành Toán 8 tập 2

Cho hai hàm số bậc nhất y = 5x + 1 (1) và y = 3x – 5 (2). Tìm hàm số bậc nhất có đồ thị là đường thẳng (d) song song với đồ thị của hàm số (1) và cắt đồ thị của hàm số (2) tại điểm có hoành độ bằng 1.

Đề bài

Cho hai hàm số bậc nhất y = 5x + 1 (1) và y = 3x – 5 (2). Tìm hàm số bậc nhất có đồ thị là đường thẳng (d) song song với đồ thị của hàm số (1) và cắt đồ thị của hàm số (2) tại điểm có hoành độ bằng 1.

Phương pháp giải - Xem chi tiết

Hai đường thẳng y = ax + b (a ≠ 0)và y = a′x + b′ (a′ ≠ 0)song song với nhau khi a = a’; cắt nhau khi a ≠ a′.

Lời giải chi tiết

Giả sử hàm số bậc nhất cần tìm là y = ax + b (a ≠ 0).

Vì đường thẳng (d) song song với đồ thị hàm số (1) nên ta có a = 5.

Đường thẳng (d) cắt đồ thị hàm số (2) tại điểm A có hoành độ bằng 1 nên ta có tọa độ của A(1; -2). Khi đó, ta có -2 = 5.1 + b, tức là b = -7.

Vậy hàm số cần tìm là y = 5x – 7.


Cùng chủ đề:

Giải bài 4 trang 49 vở thực hành Toán 8
Giải bài 4 trang 50 vở thực hành Toán 8
Giải bài 4 trang 52 vở thực hành Toán 8 tập 2
Giải bài 4 trang 53 vở thực hành Toán 8
Giải bài 4 trang 55 vở thực hành Toán 8
Giải bài 4 trang 56 vở thực hành Toán 8 tập 2
Giải bài 4 trang 58 vở thực hành Toán 8
Giải bài 4 trang 60 vở thực hành Toán 8 tập 2
Giải bài 4 trang 62 vở thực hành Toán 8
Giải bài 4 trang 64 vở thực hành Toán 8
Giải bài 4 trang 64 vở thực hành Toán 8 tập 2