Giải bài 4 trang 68 sách bài tập toán 11 - Cánh diều
Phát biểu nào sau đây là SAI?
Đề bài
Phát biểu nào sau đây là SAI?
A. Nếu \(\lim {u_n} = + \infty \) và \(\lim {v_n} = C\), \(C > 0\) thì \(\lim \frac{{{u_n}}}{{{v_n}}} = + \infty \).
B. Nếu \(\lim {u_n} = - \infty \) và \(\lim {v_n} = C\), \(C < 0\) thì \(\lim \frac{{{u_n}}}{{{v_n}}} = + \infty \).
C. Nếu \(\lim {u_n} = + \infty \) và \(\lim {v_n} = C\), \(C < 0\) thì \(\lim \frac{{{u_n}}}{{{v_n}}} = 0\).
D. Nếu \(\lim {u_n} = - \infty \) và \(\lim {v_n} = C\), \(C > 0\) thì \(\lim \frac{{{u_n}}}{{{v_n}}} = - \infty \).
Phương pháp giải - Xem chi tiết
Sử dụng tính chất về dãy số có giới hạn vô cực
Lời giải chi tiết
Đáp án A đúng vì theo tính chất về dãy số có giới hạn vô cực, nếu \(\lim {u_n} = + \infty \) và \(\lim {v_n} = C\), \(C > 0\) thì \(\lim \frac{{{u_n}}}{{{v_n}}} = + \infty \)
Đáp án B đúng vì theo tính chất về dãy số có giới hạn vô cực, nếu \(\lim {u_n} = - \infty \) và \(\lim {v_n} = C\), \(C < 0\) thì \(\lim \frac{{{u_n}}}{{{v_n}}} = + \infty \)
Đáp án C sai vì theo tính chất về dãy số có giới hạn vô cực, nếu \(\lim {u_n} = + \infty \) và \(\lim {v_n} = C\), \(C < 0\) thì \(\lim \frac{{{u_n}}}{{{v_n}}} = - \infty \ne 0\)
Đáp án D đúng vì theo tính chất về dãy số có giới hạn vô cực, nếu \(\lim {u_n} = - \infty \) và \(\lim {v_n} = C\), \(C > 0\) thì \(\lim \frac{{{u_n}}}{{{v_n}}} = - \infty \)
Vậy đáp án cần chọn là đáp án B.