Giải bài 4 trang 80 SGK Toán 8 tập 1– Chân trời sáng tạo — Không quảng cáo

Toán 8, giải toán lớp 8 chân trời sáng tạo Bài 4. Hình bình hành - Hình thoi Toán 8 chân trời sáng


Giải bài 4 trang 80 SGK Toán 8 tập 1– Chân trời sáng tạo

Cho hình bình hành

Đề bài

Cho hình bình hành \(ABCD\) ( \(AB > BC\) ). Tia phân giác của góc \(D\) cắt \(AB\) tại \(E\) , tia phân giác của góc \(B\) cắt \(CD\) tại \(F\)

a) Chứng minh \(DE\) // \(BF\)

b) Tứ giác \(DEBF\) là hình gì?

Phương pháp giải - Xem chi tiết

a) Chỉ ra cặp góc đồng vị bằng nhau

b) Áp dụng dấu hiệu nhận biết hình bình hành

Lời giải chi tiết

a) Vì \(DE\) , \(BF\) là phân giác (gt)

Suy ra \(\widehat {{\rm{ADE}}} = \widehat {{\rm{EDC}}} = \frac{{\widehat {ADC}}}{2}\) ; \(\widehat {{\rm{EBF}}} = \widehat {{\rm{CBF}}} = \frac{{\widehat {ABC}}}{2}\) (1)

\(ABCD\) là hình bình hành (gt)

Suy ra \(AB\) // \(CD\) \(\widehat {ADC} = \widehat {ABC}\) (2)

Suy ra \(\widehat {{\rm{AED}}} = \widehat {{\rm{EDC}}}\) (so le trong) (3)

Từ (1), (2), (3) suy ra \(\widehat {AED} = \widehat {ABF}\)

Mà hai góc ở vị trí đồng vị

Suy ra \(DE\) // \(BF\)

b) Xét tứ giác \(DEBF\) ta có:

\(DE\) // \(BF\) (cmt)

\(BE\) // \(DF\) (do \(AB\) // \(CD\) )

Suy ra \(DEBF\) là hình bình hành


Cùng chủ đề:

Giải bài 4 trang 66 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 4 trang 67 SGK Toán 8 – Chân trời sáng tạo
Giải bài 4 trang 71 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 4 trang 72 SGK Toán 8 – Chân trời sáng tạo
Giải bài 4 trang 76 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 4 trang 80 SGK Toán 8 tập 1– Chân trời sáng tạo
Giải bài 4 trang 83 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 4 trang 84 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 4 trang 87 SGK Toán 8 tập 1– Chân trời sáng tạo
Giải bài 4 trang 88 SGK Toán 8 tập 1– Chân trời sáng tạo
Giải bài 4 trang 91 SGK Toán 8 tập 2– Chân trời sáng tạo