Giải bài 5 trang 13 vở thực hành Toán 9 tập 2 — Không quảng cáo

Giải vth Toán 9, soạn vở thực hành Toán 9 KNTT Bài 19. Phương trình bậc hai một ẩn trang 10, 11, 12 Vở


Giải bài 5 trang 13 vở thực hành Toán 9 tập 2

Dùng công thức nghiệm thu gọn của phương trình bậc hai, giải các phương trình sau: a) ({x^2} + 2sqrt 5 x + 4 = 0); b) (2{x^2} - 28x + 98 = 0); c) (2{x^2} - 4sqrt 5 x + 9 = 0).

Đề bài

Dùng công thức nghiệm thu gọn của phương trình bậc hai, giải các phương trình sau:

a) \({x^2} + 2\sqrt 5 x + 4 = 0\);

b) \(2{x^2} - 28x + 98 = 0\);

c) \(2{x^2} - 4\sqrt 5 x + 9 = 0\).

Phương pháp giải - Xem chi tiết

Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\), với \(b = 2b'\) và \(\Delta ' = b{'^2} - ac\)

+ Nếu \(\Delta ' > 0\) thì phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{ - b' + \sqrt {\Delta '} }}{a};{x_2} = \frac{{ - b - \sqrt {\Delta '} }}{a}\).

+ Nếu \(\Delta ' = 0\) thì phương trình có nghiệm kép: \({x_1} = {x_2} = \frac{{ - b'}}{a}\).

+ Nếu \(\Delta ' < 0\) thì phương trình vô nghiệm.

Lời giải chi tiết

a) Ta có: \(\Delta ' = {\left( {\sqrt 5 } \right)^2} - 4.1 = 1 > 0,\sqrt {\Delta '}  = 1\). Áp dụng công thức nghiệm thu gọn, phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{1 - \sqrt 5 }}{1} = 1 - \sqrt 5 ;{x_2} = \frac{{ - 1 - \sqrt 5 }}{1} =  - 1 - \sqrt 5 \).

b) Ta có: \(\Delta ' = {\left( { - 14} \right)^2} - 2.98 = 0\). Áp dụng công thức nghiệm thu gọn, phương trình có nghiệm kép \({x_1} = {x_2} = \frac{{14}}{2} = 7\).

c) Ta có: \(\Delta ' = {\left( { - 2\sqrt 5 } \right)^2} - 2.9 = 2 > 0\). Áp dụng công thức nghiệm thu gọn, phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{2\sqrt 5  + \sqrt 2 }}{2};{x_2} = \frac{{2\sqrt 5  - \sqrt 2 }}{2}\).


Cùng chủ đề:

Giải bài 4 trang 123 vở thực hành Toán 9 tập 2
Giải bài 4 trang 126 vở thực hành Toán 9 tập 2
Giải bài 4 trang 130, 131 vở thực hành Toán 9 tập 2
Giải bài 5 trang 8 vở thực hành Toán 9 tập 2
Giải bài 5 trang 9 vở thực hành Toán 9
Giải bài 5 trang 13 vở thực hành Toán 9 tập 2
Giải bài 5 trang 14 vở thực hành Toán 9
Giải bài 5 trang 17 vở thực hành Toán 9
Giải bài 5 trang 18 vở thực hành Toán 9 tập 2
Giải bài 5 trang 22 vở thực hành Toán 9
Giải bài 5 trang 23 vở thực hành Toán 9 tập 2