Giải bài 5 trang 65 SGK Toán 10 tập 1 – Chân trời sáng tạo — Không quảng cáo

Toán 10, giải toán lớp 10 chân trời sáng tạo Bài 1. Giá trị lượng giác của một góc từ 0 đến 180 Toán


Giải bài 5 trang 65 SGK Toán 10 tập 1 – Chân trời sáng tạo

Chứng minh rằng với mọi góc alpha ta đều có:

Chứng minh rằng với mọi góc \(\alpha \;\;({0^o} \le \alpha  \le {180^o})\), ta đều có:

LG a

a) \({\cos ^2}\alpha  + {\sin ^2}\alpha  = 1\)

Phương pháp giải:

Lấy điểm M trên nửa đường tròn đơn vị sao cho \(\alpha  = \widehat {xOM}\)

\(\sin \alpha  = \frac{{MH}}{{OM}};\;\cos \alpha  = \frac{{OH}}{{OM}};\;\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }};\;\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }}.\)

Lời giải chi tiết:

Trên nửa đường tròn đơn vị, lấy điểm M sao cho \(\widehat {xOM} = \alpha \)

Gọi H, K lần lượt là các hình chiếu vuông góc của M trên Ox, Oy.

Ta có: tam giác vuông OHM vuông tại H và \(\alpha  = \widehat {xOM}\)

Do đó: \(\sin \alpha  = \frac{{MH}}{{OM}} = MH;\;\cos \alpha  = \frac{{OH}}{{OM}} = OH.\)

\( \Rightarrow {\cos ^2}\alpha  + {\sin ^2}\alpha  = O{H^2} + M{H^2} = O{M^2} = 1\)

LG b

b) \(\tan \alpha .\cot \alpha  = 1\;({0^o} < \alpha  < {180^o},\alpha  \ne {90^o})\)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}\;\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }};\;\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }}.\\ \Rightarrow \;\tan \alpha .\cot \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }}.\frac{{\cos \alpha }}{{\sin \alpha }} = 1\end{array}\)

LG c

c) \(1 + {\tan ^2}\alpha  = \frac{1}{{{{\cos }^2}\alpha }}\;(\alpha  \ne {90^o})\)

Lời giải chi tiết:

Với \(\alpha  \ne {90^o}\) ta có:

\(\begin{array}{l}\;\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }};\;\\ \Rightarrow \;1 + {\tan ^2}\alpha  = 1 + \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{1}{{{{\cos }^2}\alpha }}\;\end{array}\)

LG d

d) \(1 + {\cot ^2}\alpha  = \frac{1}{{{{\sin }^2}\alpha }}\;({0^o} < \alpha  < {180^o})\)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }};\;\\ \Rightarrow \;1 + {\cot ^2}\alpha  = 1 + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{1}{{{{\sin }^2}\alpha }}\;\end{array}\)


Cùng chủ đề:

Giải bài 5 trang 48 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 5 trang 56 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 5 trang 58 SGK Toán 10 tập 2 – Chân trời sáng tạo
Giải bài 5 trang 59 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 5 trang 63 SGK Toán 10 tập 2 – Chân trời sáng tạo
Giải bài 5 trang 65 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 5 trang 71 SGK Toán 10 tập 2 – Chân trời sáng tạo
Giải bài 5 trang 73 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 5 trang 74 SGK Toán 10 tập 2 – Chân trời sáng tạo
Giải bài 5 trang 78 SGK Toán 10 tập 1 – Chân trời sáng tạo
Giải bài 5 trang 79 SGK Toán 10 tập 1 – Chân trời sáng tạo