Giải bài 5 trang 84 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Cho hai hàm số f(x) và g(x) có lim và \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) + 2g\left( x \right)} \right] = 7. Tìm \mathop {\lim }\limits_{x \to + \infty } \frac{{2f\left( x \right) + g\left( x \right)}}{{2f\left( x \right) - g\left( x \right)}}
Đề bài
Cho hai hàm số f(x) và g(x) có \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 3 và \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) + 2g\left( x \right)} \right] = 7. Tìm \mathop {\lim }\limits_{x \to + \infty } \frac{{2f\left( x \right) + g\left( x \right)}}{{2f\left( x \right) - g\left( x \right)}}
Phương pháp giải - Xem chi tiết
+ Sử dụng kiến thức về các phép toán về giới của hàm số tại vô cực để tính: Cho \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L,\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = M: \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M, \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right).g\left( x \right)} \right] = L.M
+ Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \mathop {\lim }\limits_{x \to + \infty } c = c (với c là hằng số)
Lời giải chi tiết
Ta có: g\left( x \right) = \frac{1}{2}\left\{ {\left[ {f\left( x \right) + 2g\left( x \right)} \right] - f\left( x \right)} \right\}
Do đó, \mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = \frac{1}{2}\left\{ {\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) + 2g\left( x \right)} \right] - \mathop {\lim }\limits_{x \to + \infty } f\left( x \right)} \right\} = \frac{1}{2}\left( {7 - 3} \right) = 2
Suy ra: \mathop {\lim }\limits_{x \to + \infty } \frac{{2f\left( x \right) + g\left( x \right)}}{{2f\left( x \right) - g\left( x \right)}} = \frac{{2\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) + \mathop {\lim }\limits_{x \to + \infty } g\left( x \right)}}{{2\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) - \mathop {\lim }\limits_{x \to + \infty } g\left( x \right)}} = \frac{{2.3 + 2}}{{2.3 - 2}} = 2