Giải bài 5 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1 — Không quảng cáo

SBT Toán 11 - Giải SBT Toán 11 - Chân trời sáng tạo Bài tập cuối chương 2 - SBT Toán 11 CTST


Giải bài 5 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Xác định số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\) có \(\left\{ \begin{array}{l}{u_3} - {u_1} = 24\\{u_6} - {u_4} = 3\;000\end{array} \right.\).

Đề bài

Xác định số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\) có \(\left\{ \begin{array}{l}{u_3} - {u_1} = 24\\{u_6} - {u_4} = 3\;000\end{array} \right.\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về số hạng tổng quát của cấp số nhân để tính: Nếu một cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công bội q thì số hạng tổng quát \({u_n}\) của nó được xác định bởi công thức: \({u_n} = {u_1}.{q^{n - 1}},n \ge 2\).

Lời giải chi tiết

\(\left\{ \begin{array}{l}{u_3} - {u_1} = 24\\{u_6} - {u_4} = 3\;000\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^2} - {u_1} = 24\\{u_1}.{q^5} - {u_1}.{q^3} = 3\;000\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {{q^2} - 1} \right) = 24\\{u_1}.{q^3}\left( {{q^2} - 1} \right) = 3\;000\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {{q^2} - 1} \right) = 24\\24{q^3} = 3\;000\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {{q^2} - 1} \right) = 24\\{q^3} = 125\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = \frac{{24}}{{{5^2} - 1}} = 1\\q = 5\end{array} \right.\)

Vậy cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu là \({u_1} = 1\) và công bội là \(q = 5\).


Cùng chủ đề:

Giải bài 5 trang 51 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 5 trang 58 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 5 trang 60 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 5 trang 62 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 5 trang 63 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 5 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 5 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 5 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 5 trang 76 sách bài tập toán 11 - Chân trời sáng tạo tập 2
Giải bài 5 trang 84 sách bài tập toán 11 - Chân trời sáng tạo tập 1
Giải bài 5 trang 90 sách bài tập toán 11 - Chân trời sáng tạo tập 1