Giải bài 6.7 trang 11 SGK Toán 8 tập 2 - Kết nối tri thức
Dùng tính chất cơ bản của phân thức, giải thích vì sao các kết luận sau đúng.
Đề bài
Dùng tính chất cơ bản của phân thức, giải thích vì sao các kết luận sau đúng.
\(a)\frac{{{{\left( {x - 2} \right)}^3}}}{{{x^2} - 2}} = \frac{{{{\left( {x - 2} \right)}^2}}}{2}\)
\(b)\frac{{1 - x}}{{ - 5{\rm{x}} - 1}} = \frac{{x - 1}}{{5{\rm{x}} - 1}}\)
Phương pháp giải - Xem chi tiết
a) Nhân cả tử và mẫu của phân thức với x – 2
b) Nhân cả tử và mẫu của phân thức với -1
Lời giải chi tiết
a) Nhân cả tử và mẫu của phân thức \(\frac{{{{\left( {x - 2} \right)}^2}}}{x}\) với x – 2 ta có:
\(\frac{{{{\left( {x - 2} \right)}^2}}}{x} = \frac{{\left( {x - 2} \right){{\left( {x - 2} \right)}^2}}}{{x\left( {x - 2} \right)}} = \frac{{{x^3} - 6{{\rm{x}}^2} + 12{\rm{x}} - 8}}{{x\left( {x - 2} \right)}} = \frac{{{{\left( {x - 2} \right)}^3}}}{{{x^2} - 2}}\)
b) Nhân cả tử và mẫu của phân thức \(\frac{{1 - x}}{{ - 5{\rm{x}} + 1}}\) với -1 ta được:
\(\frac{{1 - x}}{{ - 5{\rm{x}} + 1}} = \frac{{x - 1}}{{5{\rm{x}} - 1}}\)