Processing math: 100%

Giải bài 6 trang 53 sách bài tập toán 9 - Cánh diều tập 1 — Không quảng cáo

SBT Toán 9 - Giải SBT Toán 9 - Cánh diều Bài 1. Căn bậc hai và căn bậc ba của số thức - SBT Toán


Giải bài 6 trang 53 sách bài tập toán 9 - Cánh diều tập 1

Cho hình thang cân ABCD có AB // CD và ACAD. Tính độ dài cạnh AD, biết AB=5cm,CD=11cm.

Đề bài

Cho hình thang cân ABCD có AB // CD ACAD. Tính độ dài cạnh AD, biết AB=5cm,CD=11cm.

Phương pháp giải - Xem chi tiết

Bước 1: Kẻ đường cao BH, CK.

Bước 2: Chứng minh ABKH là hình chữ nhật, từ đó tính được HK.

Bước 3: Chứng minh ΔAHD=ΔAKC, từ đó tính được DH.

Bước 4: Chứng minh , từ đó tính được AD.

Lời giải chi tiết

Kẻ BH, CK lần lượt vuông góc với CD tại H, K do đó ^AHK=^BKH=90.

Do BKCD,AB//CD nên BKAB, suy ra ^ABK=90.

Xét tứ giác ABKH, ta có ^AHK=^BKH=^ABK=90 nên ABKH là hình chữ nhật.

Suy ra HK=AB=5cm.

Xét tam giác AHD và tam giác BKC ta có:

AD = BC (ABCD là hình thang cân)

AH = BK (ABKH là hình chữ nhật)

^AHD=^BKC(=90)

Do đó ΔAHD=ΔAKC(cạnh huyền – cạnh góc vuông)

Nên HD=KC=CDHK2=3cm.

Xét tam giác ACD và tam giác HAD có:

^ADC chung, ^DAC=^AHD(=90)

Suy ra  nên CDAD=ADHD hay AD2=CD.HD,

do đó AD=CD.HD=11.3=33cm.


Cùng chủ đề:

Giải bài 5 trang 107 sách bài tập toán 9 - Cánh diều tập 2
Giải bài 5 trang 125 sách bài tập toán 9 - Cánh diều tập 2
Giải bài 6 trang 10 sách bài tập toán 9 - Cánh diều tập 1
Giải bài 6 trang 13 sách bài tập toán 9 - Cánh diều tập 2
Giải bài 6 trang 35 sách bài tập toán 9 - Cánh diều tập 1
Giải bài 6 trang 53 sách bài tập toán 9 - Cánh diều tập 1
Giải bài 6 trang 58 sách bài tập toán 9 - Cánh diều tập 2
Giải bài 6 trang 82 sách bài tập toán 9 - Cánh diều tập 1
Giải bài 6 trang 85 sách bài tập toán 9 - Cánh diều tập 2
Giải bài 6 trang 103 sách bài tập toán 9 - Cánh diều tập 1
Giải bài 6 trang 107 sách bài tập toán 9 - Cánh diều tập 2