Giải bài 6 trang 67 SGK Toán 8 – Chân trời sáng tạo — Không quảng cáo

Toán 8, giải toán lớp 8 chân trời sáng tạo Bài 2. Tứ giác - Toán 8 - Chân trời sáng tạo


Giải bài 6 trang 67 SGK Toán 8 – Chân trời sáng tạo

Ta gọi tứ giác ABCD với

Đề bài

Ta gọi tứ giác ABCD với AB = AD, CB = CD (hình 13) là hình “cái diều”.

a. Chứng minh rằng AC là đường trung trực của BD.

b. Cho biết \(\widehat B = {95^0},\widehat C = {35^0}.\) Tính \(\widehat A\) \(\widehat D\)

Phương pháp giải - Xem chi tiết

a) Sử dụng tính chất của đường trung trực để chứng minh \(AC\) là trung trực của \(BD\)

b) Sử dụng tính chất tổng bốn góc trong tứ giác \(ABCD\)

Lời giải chi tiết

a) Ta có:

\(AB = AD\) (gt) nên \(A\) thuộc đường trung trực của \(BD\)

\(CB = CD\) (gt) nên \(C\) thuộc đường trung trực của \(BD\)

Vậy \(AC\) là đường trung trực của \(BD\)

b) Xét \(\Delta ABC\) \(\Delta ADC\) ta có:

\(AB = AD\) (gt)

\(BC = CD\) (gt)

\(AC\) chung

Suy ra: \(\Delta ABC = \Delta ADC\) (c-c-c)

Suy ra: \(\widehat {ABC} = \widehat {ADC} = 95^\circ \) (hai góc tương ứng)

Trong tứ giác \(ABCD\) , tổng các góc bằng \(360^\circ \) nên:

\(\widehat A = 360^\circ  - \left( {95^\circ  + 35^\circ  + 95^\circ } \right) = 135^\circ \)


Cùng chủ đề:

Giải bài 6 trang 50 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 6 trang 54 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 6 trang 58 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 6 trang 62 SGK Toán 8 – Chân trời sáng tạo
Giải bài 6 trang 66 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 6 trang 67 SGK Toán 8 – Chân trời sáng tạo
Giải bài 6 trang 71 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 6 trang 72 SGK Toán 8 – Chân trời sáng tạo
Giải bài 6 trang 76 SGK Toán 8 tập 2– Chân trời sáng tạo
Giải bài 6 trang 81 SGK Toán 8 tập 1– Chân trời sáng tạo
Giải bài 6 trang 84 SGK Toán 8 tập 2– Chân trời sáng tạo