Giải bài 6 trang 72 SGK Toán 8 – Chân trời sáng tạo
Cho hình thang cân
Đề bài
Cho hình thang cân \(ABCD\) có \(AB\) // \(CD\) . Qua giao điểm \(E\) của \(AC\) và \(BD\) , ta vẽ đường thẳng song song với \(AB\) và cắt \(AD\) , \(BC\) lần lượt tại \(F\) và \(G\) (Hình 16). Chứng minh rằng \(EG\) là tia phân giác của góc \(CEB\) .
Phương pháp giải - Xem chi tiết
Chứng minh \(\widehat {{\rm{CEG}}} = \widehat {{\rm{BEG}}}\)
Lời giải chi tiết
Vì \(EG\) // \(AB\) (gt)
suy ra \(\widehat {{\rm{CEG}}} = \widehat {{\rm{CAB}}}\) (đồng vị) và \(\widehat {{\rm{GEB}}} = \widehat {{\rm{EBA}}}\) (so le trong) (1)
Xét \(\Delta CAB\) và \(\Delta DBA\) ta có:
\(AC = BD\) (tính chất hình thang cân)
\(BC = AD\) (tính chất hình thang cân)
\(AB\) chung
Suy ra \(\Delta CAB = \Delta DBA\) (c-c-c)
Suy ra \(\widehat {{\rm{CAB}}} = \widehat {{\rm{EBA}}}\) (hai góc tương ứng) (2)
Từ (1) và (2) suy ra \(\widehat {{\rm{CEG}}} = \widehat {{\rm{GEB}}}\)
Suy ra \(EG\) là phân giác của \(\widehat {{\rm{CEB}}}\)