Giải bài 7 trang 28 vở thực hành Toán 8
Chứng minh rằng với mọi số tự nhiên n, ta có:
Đề bài
Chứng minh rằng với mọi số tự nhiên n, ta có:
\({\left( {n + 2} \right)^2}\;-{n^2}\) chia hết cho 4.
Phương pháp giải - Xem chi tiết
Sử dụng hằng đẳng thức b ình phương của một tổng: \({\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\)
Lời giải chi tiết
Ta có \({\left( {n + 2} \right)^2}\;-{n^2}\; = \left( {{n^2}\; + 4n + 4} \right)-{n^2}\; = 4n + 4\) .
Vì \(4\; \vdots \;4\) nên tích 4n chia hết cho 4.
Vậy \({\left( {n + 2} \right)^2}\;-{n^2}\) chia hết cho 4.
Cùng chủ đề:
Giải bài 7 trang 28 vở thực hành Toán 8