Giải bài 7 trang 68 SGK Toán 7 tập 2 - Cánh diều
Tính:
Đề bài
Tính:
a) \(({x^2} + 2x + 3) + (3{x^2} - 5x + 1)\);
b) \((4{x^3} - 2{x^2} - 6) - ({x^3} - 7{x^2} + x - 5)\);
c) \( - 3{x^2}(6{x^2} - 8x + 1)\);
d) \((4{x^2} + 2x + 1)(2x - 1)\);
e) \(({x^6} - 2{x^4} + {x^2}):( - 2{x^2})\);
g) \(({x^5} - {x^4} - 2{x^3}):({x^2} + x)\).
Phương pháp giải - Xem chi tiết
Muốn cộng (trừ) các đa thức cùng biến với nhau, ta cộng (trừ) các đơn thức có cùng lũy thừa (số mũ) của biến với nhau.
Muốn nhân các đa thức cùng biến với nhau, ta nhân từng đơn thức của đa thức này với đa thức kia rồi cộng chúng lại với nhau.
Muốn chia các đa thức cùng biến với nhau, ta chia đa thức này cho từng đơn thức của đa thức kia rồi cộng chúng lại với nhau.
Lời giải chi tiết
a) \(({x^2} + 2x + 3) + (3{x^2} - 5x + 1) \)
\(= ({x^2} + 3{x^2}) + (2x - 5x) + (3 + 1) \)
\(= 4{x^2} - 3x + 4\)
b) \((4{x^3} - 2{x^2} - 6) - ({x^3} - 7{x^2} + x - 5) \)
\(= 4{x^3} - 2{x^2} - 6 - {x^3} + 7{x^2} - x + 5\)
\(= (4{x^3} - {x^3}) + ( - 2{x^2} + 7{x^2}) - x + ( - 6 + 5) \)
\(= 3{x^3} + 5{x^2} - x - 1\)
c) \( - 3{x^2}(6{x^2} - 8x + 1) \)
\(= - 3{x^2}.6{x^2} - - 3{x^2}.8x + - 3{x^2}.1\)
\(= - 18{x^{2 + 2}} + 24{x^{2 + 1}} - 3{x^2} \)
\(= - 18{x^4} + 24{x^3} - 3{x^2}\)
d) \((4{x^2} + 2x + 1)(2x - 1) \)
\(= (4{x^2} + 2x + 1).2x - (4{x^2} + 2x + 1).1 \)
\(= 4{x^2}.2x + 2x.2x + 1.2x - 4{x^2} - 2x - 1\)
\(= 8{x^{2 + 1}} + 4{x^{1 + 1}} + 2x - 4{x^2} - 2x - 1 \)
\(= 8{x^3} + 4{x^2} + 2x - 4{x^2} - 2x - 1 \)
\(= 8{x^3} - 1\)
e) \(({x^6} - 2{x^4} + {x^2}):( - 2{x^2}) \)
\(= {x^6}:( - 2{x^2}) - 2{x^4}:( - 2{x^2}) + {x^2}:( - 2{x^2})\)
\(= - \dfrac{1}{2}{x^{6 - 2}} + {x^{4 - 2}} - \dfrac{1}{2}{x^{2 - 2}} \)
\(= - \dfrac{1}{2}{x^4} + {x^2} - \dfrac{1}{2}.\)
g)
\(({x^5} - {x^4} - 2{x^3}):({x^2} + x)=x^3-2x^2\)