Giải bài 76 trang 37 sách bài tập toán 12 - Cánh diều
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số (y = a{x^3} + b{x^2} + cx + dleft( {a ne 0} right)) có đồ thị là đường cong ở Hình 20. a) (a > 0). b) Đồ thị cắt trục tung tại điểm có tung độ dương. c) Đồ thị hàm số có hai điểm cực trị nằm cùng phía với trục tung. d) (b < 0).
Đề bài
Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hàm số y=ax3+bx2+cx+d(a≠0) có đồ thị là đường cong ở Hình 20. a) a>0. b) Đồ thị cắt trục tung tại điểm có tung độ dương. c) Đồ thị hàm số có hai điểm cực trị nằm cùng phía với trục tung. d) b<0.
Phương pháp giải - Xem chi tiết
‒ Dựa vào hình dáng của đồ thị hàm số.
‒ Xét giao điểm của đồ thị hàm số với các trục toạ độ.
‒ Xét các điểm cực trị của hàm số.
Lời giải chi tiết
• Căn cứ hình dáng của đồ thị hàm số, ta có: a>0. Vậy a) đúng.
• Đồ thị cắt trục tung tại điểm (0;d) nằm phía trên trục hoành nên điểm đó có tung độ dương. Vậy b) đúng.
• Đồ thị hàm số có hai điểm cực trị nằm ở hai phía trục tung. Vậy c) sai.
• Trung điểm của đoạn nối hai điểm cực trị x1,x2 nằm bên phải trục tung nên x1+x2=−2b3a>0⇔2b3a<0. Do a>0 nên b<0. Vậy d) đúng.
a) Đ.
b) Đ.
c) S.
d) Đ.