Giải bài 8 trang 103 sách bài tập toán 9 - Cánh diều tập 1 — Không quảng cáo

SBT Toán 9 - Giải SBT Toán 9 - Cánh diều Bài 1. Đường tròn. Vị trí tương đối của hai đường tròn


Giải bài 8 trang 103 sách bài tập toán 9 - Cánh diều tập 1

Cho đường tròn tâm O bán kính OA và đường tròn tâm O' đường kính OA. a) Xét vị trí tương đối của hai đường tròn (O) và (O'). b) Dây AD của đường tròn (O) cắt đường tròn (O’) tại C. Chứng minh AC = CD.

Đề bài

Cho đường tròn tâm O bán kính OA và đường tròn tâm O' đường kính OA.

a) Xét vị trí tương đối của hai đường tròn (O) và (O').

b) Dây AD của đường tròn (O) cắt đường tròn (O’) tại C. Chứng minh AC = CD.

Phương pháp giải - Xem chi tiết

a) Chỉ ra \(OO' = OA - O'A\)

b) Bước 1: Chứng minh \(OC \bot DC\) (do \(O'C = \frac{1}{2}AO\) nên tam giác OAC vuông tại C).

Bước 2: OC là đường cao đồng thời là đường trug tuyến trong tam giác cân OAD.

Lời giải chi tiết

a) Vì đường tròn tâm O' đường kính OA  nên \(OO' = O'A = \frac{{OA}}{2}\)

Do đó \(OO' = OA - O'A\) nên 2 đường tròn (O) và (O) tiếp xúc trong tại A.

b) Xét tam giác OAC có: \(CO' = OO' = AO'( = r)\) suy ra \(O'C = \frac{1}{2}AO\) nên tam giác OAC vuông tại C. Do đó \(OC \bot DC\).

Xét tam giác DOA cân tại O (\(OD = OA = R\)) có đường cao OC (do \(OC \bot DC\)) đồng thời là đường trung tuyến nên CD = CA.


Cùng chủ đề:

Giải bài 8 trang 36 sách bài tập toán 9 - Cánh diều tập 1
Giải bài 8 trang 53 sách bài tập toán 9 - Cánh diều tập 1
Giải bài 8 trang 58 sách bài tập toán 9 - Cánh diều tập 2
Giải bài 8 trang 82 sách bài tập toán 9 - Cánh diều tập 1
Giải bài 8 trang 86 sách bài tập toán 9 - Cánh diều tập 2
Giải bài 8 trang 103 sách bài tập toán 9 - Cánh diều tập 1
Giải bài 8 trang 107 sách bài tập toán 9 - Cánh diều tập 2
Giải bài 8 trang 125 sách bài tập toán 9 - Cánh diều tập 2
Giải bài 9 trang 14 sách bài tập toán 9 - Cánh diều tập 1
Giải bài 9 trang 14 sách bài tập toán 9 - Cánh diều tập 2
Giải bài 9 trang 36 sách bài tập toán 9 - Cánh diều tập 1