Giải bài 8 trang 61 sách bài tập toán 12 - Cánh diều — Không quảng cáo

SBT Toán 12 - Giải SBT Toán 12 - Cánh diều Bài 1. Vecto và các phép toán vecto trong không gian


Giải bài 8 trang 61 sách bài tập toán 12 - Cánh diều

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hình chóp tứ giác đều (S.ABCD) có độ dài tất cả các cạnh đều bằng (a) (Hình 10). a) Tứ giác (ABCD) là hình vuông. b) Tam giác (SAC) vuông cân tại (S). c) (left( {overrightarrow {SA} ,overrightarrow {AC} } right) = {45^ circ }). d) (overrightarrow {SA} .overrightarrow {AC} = - {a^2}).

Đề bài

Trong mỗi ý a), b), c), d), chọn phương án đúng (Đ) hoặc sai (S). Cho hình chóp tứ giác đều \(S.ABCD\) có độ dài tất cả các cạnh đều bằng \(a\) (Hình 10). a) Tứ giác \(ABCD\) là hình vuông. b) Tam giác \(SAC\) vuông cân tại \(S\). c) \(\left( {\overrightarrow {SA} ,\overrightarrow {AC} } \right) = {45^ \circ }\). d) \(\overrightarrow {SA} .\overrightarrow {AC} = - {a^2}\).

Phương pháp giải - Xem chi tiết

‒ Sử dụng định lí Pitago.

‒ Sử dụng tích vô hướng của hai vectơ: \(\overrightarrow a .\overrightarrow b  = \left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|.\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\).

Lời giải chi tiết

\(S.ABCD\) là chóp tứ giác đều nên tứ giác \(ABCD\) là hình vuông. Vậy a) đúng.

\(ABCD\) là hình vuông nên \(AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2 \).

Tam giác \(SAC\) có: \(S{A^2} + S{C^2} = 2{{\rm{a}}^2} = A{C^2}\).

Vậy tam giác \(SAC\) vuông cân tại \(S\). Vậy b) đúng.

\(\begin{array}{l}\cos \left( {\overrightarrow {SA} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {SA} .\overrightarrow {AC} }}{{\left| {\overrightarrow {SA} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{ - \overrightarrow {AS} .\overrightarrow {AC} }}{{\left| {\overrightarrow {SA} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{ - \left| {\overrightarrow {AS} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \left( {\overrightarrow {AS} ,\overrightarrow {AC} } \right)}}{{\left| {\overrightarrow {SA} } \right|.\left| {\overrightarrow {AC} } \right|}}\\ &  = \frac{{ - a.a\sqrt 2 .\cos \widehat {SAC}}}{{a.a\sqrt 2 }} = \frac{{ - a.a\sqrt 2 .\cos {{45}^ \circ }}}{{a.a\sqrt 2 }} =  - \frac{{\sqrt 2 }}{2}\end{array}\)

\( \Rightarrow \left( {\overrightarrow {SA} ,\overrightarrow {AC} } \right) = {135^ \circ }\). Vậy c) sai.

\(\overrightarrow{SA}.\overrightarrow{AC}=-\overrightarrow{AS}.\overrightarrow{AC}=-\left| \overrightarrow{AS} \right|.\left| \overrightarrow{AC} \right|.\cos \left( \overrightarrow{AS},\overrightarrow{AC} \right)=-a.a\sqrt{2}.\cos \widehat{SAC}=-a.a\sqrt{2}.\cos {{45}^{\circ }}=-{{a}^{2}}\)

Vậy d) đúng.

a) Đ

b) Đ

c) S

d) Đ


Cùng chủ đề:

Giải bài 7 trang 88 sách bài tập toán 12 - Cánh diều
Giải bài 7 trang 92 sách bài tập toán 12 - Cánh diều
Giải bài 8 trang 9 sách bài tập toán 12 - Cánh diều
Giải bài 8 trang 11 sách bài tập toán 12 - Cánh diều
Giải bài 8 trang 47 sách bài tập toán 12 - Cánh diều
Giải bài 8 trang 61 sách bài tập toán 12 - Cánh diều
Giải bài 8 trang 88 sách bài tập toán 12 - Cánh diều
Giải bài 8 trang 92 sách bài tập toán 12 - Cánh diều
Giải bài 9 trang 9 sách bài tập toán 12 - Cánh diều
Giải bài 9 trang 12 sách bài tập toán 12 - Cánh diều
Giải bài 9 trang 47 sách bài tập toán 12 - Cánh diều