Giải bài 9 trang 31 sách bài tập toán 8 - Chân trời sáng tạo tập 2 — Không quảng cáo

SBT Toán 8 - Giải SBT Toán 8 - Chân trời sáng tạo Bài tập cuối chương 6 - SBT Toán 8 CTST


Giải bài 9 trang 31 sách bài tập toán 8 - Chân trời sáng tạo tập 2

Giải các phương trình sau: a) \(\frac{{9x + 5}}{6} = 1 - \frac{{6 + 3x}}{8}\);

Đề bài

Giải các phương trình sau:

a) \(\frac{{9x + 5}}{6} = 1 - \frac{{6 + 3x}}{8}\);

b) \(\frac{{x + 1}}{4} = \frac{1}{2} + \frac{{2x + 1}}{5}\);

c) \(\frac{{2\left( {x + 1} \right)}}{3} = \frac{3}{2} - \frac{{1 - 2x}}{4}\);

d) \(\frac{x}{5} + \frac{{2x + 1}}{6} = \frac{{2\left( {x - 2} \right)}}{3}\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức giải phương trình bậc nhất để tìm nghiệm: Để giải một phương trình, ta thường sử dụng các quy tắc biến đổi sau:

+ Chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó (Quy tắc chuyển vế);

+ Nhân cả hai vế với cùng một số khác 0 (Quy tắc nhân với một số);

+ Chia cả hai vế cho cùng một số khác 0 (Quy tắc chia cho một số).

Áp dụng các quy tắc trên, phương trình \(ax + b = 0\) (với \(a \ne 0\)) được giải như sau:

\(ax + b = 0\)

\(ax =  - b\)

\(x = \frac{{ - b}}{a}\)

Lời giải chi tiết

a) \(\frac{{9x + 5}}{6} = 1 - \frac{{6 + 3x}}{8}\)

\(\frac{{4\left( {9x + 5} \right)}}{{24}} = \frac{{24}}{{24}} - \frac{{3\left( {6 + 3x} \right)}}{{24}}\)

\(36x + 20 = 24 - 18 - 9x\)

\(36x + 9x = 24 - 18 - 20\)

\(45x =  - 14\)

\(x = \frac{{ - 14}}{{45}}\)

Vậy phương trình đã cho có nghiệm là \(x = \frac{{ - 14}}{{45}}\)

b) \(\frac{{x + 1}}{4} = \frac{1}{2} + \frac{{2x + 1}}{5}\)

\(\frac{{5\left( {x + 1} \right)}}{{20}} = \frac{{10}}{{20}} + \frac{{4\left( {2x + 1} \right)}}{{20}}\)

\(5x + 5 = 10 + 8x + 4\)

\(5x - 8x = 14 - 5\)

\( - 3x = 9\)

\(x =  - 3\)

Vậy phương trình đã cho có nghiệm là \(x =  - 3\)

c) \(\frac{{2\left( {x + 1} \right)}}{3} = \frac{3}{2} - \frac{{1 - 2x}}{4}\)

\(\frac{{8\left( {x + 1} \right)}}{{12}} = \frac{{18}}{{12}} - \frac{{3\left( {1 - 2x} \right)}}{{12}}\)

\(8x + 8 = 18 - 3 + 6x\)

\(8x - 6x = 15 - 8\)

\(2x = 7\)

\(x = \frac{7}{2}\)

Vậy phương trình đã cho có nghiệm là \(x = \frac{7}{2}\)

d) \(\frac{x}{5} + \frac{{2x + 1}}{6} = \frac{{2\left( {x - 2} \right)}}{3}\)

\(\frac{{6x}}{{30}} + \frac{{5\left( {2x + 1} \right)}}{{30}} = \frac{{20\left( {x - 2} \right)}}{{30}}\)

\(6x + 10x + 5 = 20x - 40\)

\(16x - 20x =  - 40 - 5\)

\( - 4x =  - 45\)

\(x = \frac{{45}}{4}\)

Vậy phương trình đã cho có nghiệm là \(x = \frac{{45}}{4}\)


Cùng chủ đề:

Giải bài 9 trang 14 sách bài tập toán 8 - Chân trời sáng tạo
Giải bài 9 trang 19 sách bài tập toán 8 - Chân trời sáng tạo tập 2
Giải bài 9 trang 23 sách bài tập toán 8 - Chân trời sáng tạo
Giải bài 9 trang 26 sách bài tập toán 8 - Chân trời sáng tạo
Giải bài 9 trang 30 sách bài tập toán 8 - Chân trời sáng tạo tập 2
Giải bài 9 trang 31 sách bài tập toán 8 - Chân trời sáng tạo tập 2
Giải bài 9 trang 46 sách bài tập toán 8 - Chân trời sáng tạo
Giải bài 9 trang 50 sách bài tập toán 8 - Chân trời sáng tạo tập 2
Giải bài 9 trang 64 sách bài tập toán 8 - Chân trời sáng tạo tập 2
Giải bài 9 trang 73 sách bài tập toán 8 - Chân trời sáng tạo
Giải bài 9 trang 75 sách bài tập toán 8 - Chân trời sáng tạo tập 2