Giải bài 9 trang 43 vở thực hành Toán 8 — Không quảng cáo

Giải vth Toán 8, soạn vở thực hành Toán 8 KNTT Bài tập cuối chương II trang 41, 42, 43 Vở thực hành To


Giải bài 9 trang 43 vở thực hành Toán 8

Phân tích các đa thức sau thành nhân tử:

Đề bài

Phân tích các đa thức sau thành nhân tử:

a) \(2{x^2}\;-3x + 1\) .

b) \(3{x^2}\; + 4x + 1\) .

Phương pháp giải - Xem chi tiết

a) Tách hạng tử \( - 3x =  - 2x-x\) sau đó phân tích đa thức thành nhân tử bằng cách nhóm hạng tử.

b) Tách hạng tử \(4x = 3x + x\) sau đó phân tích đa thức thành nhân tử bằng cách nhóm hạng tử.

Lời giải chi tiết

a) Ta không thể áp dụng ngay phương pháp đặt nhân tử chung hay nhóm các hạng tử để phân tích đa thức này thành nhân tử, mà ta cần phải tách hạng tử \( - 3x =  - 2x-x\) và ta có

\(\begin{array}{*{20}{l}}{2{x^2}\;-3x + 1 = 2{x^2}\;-2x-x + 1 = \left( {2{x^2}\;-2x} \right)-\left( {x-1} \right)}\\{ = 2x\left( {x-1} \right)-1.\left( {x-1} \right)}\\{ = \left( {2x-1} \right)\left( {x-1} \right).}\end{array}\)

b) Tương tự câu a) ta không thể áp dụng ngay phương pháp đặt nhân tử chung, phương pháp nhóm các hạng tử hay sử dụng hằng đẳng thức cho đa thức \(3{x^2}\; + 4x + 1\) , mà phải tách hạng tử \(4x = 3x + x\) , khi đó ta có

\(\begin{array}{*{20}{l}}{3{x^2}\; + 4x + 1 = 3{x^2}\; + 3x + x + 1 = \left( {3{x^2}\; + 3x} \right) + \left( {x + 1} \right)}\\{ = 3x\left( {x + 1} \right) + \left( {x + 1} \right)}\\{ = \left( {3x + 1} \right)\left( {x + 1} \right).}\end{array}\)


Cùng chủ đề:

Giải bài 8 trang 119 vở thực hành Toán 8 tập 2
Giải bài 8 trang 125 vở thực hành Toán 8 tập 2
Giải bài 9 trang 11 vở thực hành Toán 8 tập 2
Giải bài 9 trang 25 vở thực hành Toán 8
Giải bài 9 trang 29 vở thực hành Toán 8
Giải bài 9 trang 43 vở thực hành Toán 8
Giải bài 9 trang 80 vở thực hành Toán 8 tập 2
Giải bài 9 trang 89 vở thực hành Toán 8 tập 2
Giải bài 9 trang 101 vở thực hành Toán 8
Giải bài 9 trang 106 vở thực hành Toán 8 tập 2
Giải bài 9 trang 120 vở thực hành Toán 8 tập 2