Processing math: 42%

Giải bài tập 1. 17 trang 25 SGK Toán 12 tập 1 - Kết nối tri thức — Không quảng cáo

Toán 12 Kết nối tri thức


Giải bài tập 1.17 trang 25 SGK Toán 12 tập 1 - Kết nối tri thức

Đường thẳng x=1 có phải là tiệm cận đứng của đồ thị hàm số y=x2+2x3x1 không?

Đề bài

Đường thẳng x=1 có phải là tiệm cận đứng của đồ thị hàm số y=x2+2x3x1 không?

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về khái niệm tiệm cận đứng của đồ thị hàm số để tìm tiệm cận đứng: Đường thẳng x=x0 gọi là đường tiệm cận đứng (gọi tắt là tiệm cận đứng) của đồ thị hàm số y=f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn: lim; \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) =  - \infty ; \mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) =  - \infty ; \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) =  + \infty

Lời giải chi tiết

Ta có: \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 2x - 3}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\left( {x - 1} \right)\left( {x + 3} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 3} \right) = 4

\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 2x - 3}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{\left( {x - 1} \right)\left( {x + 3} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \left( {x + 3} \right) = 4

Do đó, đường thẳng x = 1 không là tiệm cận đứng của đồ thị hàm số y = \frac{{{x^2} + 2x - 3}}{{x - 1}}.


Cùng chủ đề:

Giải bài tập 1. 12 trang 19 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 13 trang 19 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 14 trang 19 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 15 trang 19 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 16 trang 25 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 17 trang 25 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 18 trang 25 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 19 trang 25 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 20 trang 25 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 21 trang 32 SGK Toán 12 tập 1 - Kết nối tri thức
Giải bài tập 1. 22 trang 32 SGK Toán 12 tập 1 - Kết nối tri thức