Giải bài tập 1.19 trang 25 SGK Toán 12 tập 1 - Kết nối tri thức
Một công ty sản xuất đồ gia dụng ước tính chi phí để sản xuất x (sản phẩm) là \(C\left( x \right) = 2x + 50\) (triệu đồng). Khi đó, \(f\left( x \right) = \frac{{C\left( x \right)}}{x}\) là chi phí sản xuất trung bình cho mỗi sản phẩm. Chứng tỏ rằng hàm số f(x) giảm và \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 2\). Tính chất này nói lên điều gì?
Đề bài
Một công ty sản xuất đồ gia dụng ước tính chi phí để sản xuất x (sản phẩm) là \(C\left( x \right) = 2x + 50\) (triệu đồng). Khi đó, \(f\left( x \right) = \frac{{C\left( x \right)}}{x}\) là chi phí sản xuất trung bình cho mỗi sản phẩm. Chứng tỏ rằng hàm số f(x) giảm và \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 2\). Tính chất này nói lên điều gì?
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về giới hạn hàm số để tính.
Lời giải chi tiết
Ta có: \(f\left( x \right) = \frac{{C\left( x \right)}}{x} = \frac{{2x + 50}}{x}\)
Vì \(f'\left( x \right) = \frac{{ - 50}}{{{x^2}}} < 0\) với mọi số thực x nên hàm số \(f\left( x \right) = \frac{{C\left( x \right)}}{x}\) giảm.
\(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{2x + 50}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{2 + \frac{{50}}{x}}}{1} = 2\) (đpcm)
Tính chất này nói lên: Khi sản xuất càng nhiều sản phẩm thì chi phí sản xuất trung bình cho mỗi sản phẩm càng giảm, nhưng không dưới 2.