Giải bài tập 1 trang 42 SGK Toán 12 tập 2 - Chân trời sáng tạo — Không quảng cáo

Toán 12 Chân trời sáng tạo


Giải bài tập 1 trang 42 SGK Toán 12 tập 2 - Chân trời sáng tạo

Viết phương trình của mặt phẳng: a) Đi qua điểm (Aleft( {2;0;0} right)) và nhận (vec n = left( {2;1; - 1} right)) làm vectơ pháp tuyến. b) Đi qua điểm (Bleft( {1;2;3} right)) và song song với giá của mỗi vectơ (vec u = left( {1;2;3} right)) và (vec v = left( { - 2;0;1} right)). c) Đi qua ba điểm (Aleft( {1;0;0} right)), (Bleft( {0;2;0} right)) và (Cleft( {0;0;4} right)).

Đề bài

Viết phương trình của mặt phẳng:

a) Đi qua điểm \(A\left( {2;0;0} \right)\) và nhận \(\vec n = \left( {2;1; - 1} \right)\) làm vectơ pháp tuyến.

b) Đi qua điểm \(B\left( {1;2;3} \right)\) và song song với giá của mỗi vectơ \(\vec u = \left( {1;2;3} \right)\) và \(\vec v = \left( { - 2;0;1} \right)\).

c) Đi qua ba điểm \(A\left( {1;0;0} \right)\), \(B\left( {0;2;0} \right)\) và \(C\left( {0;0;4} \right)\).

Phương pháp giải - Xem chi tiết

a) Phương trình mặt phẳng đi qua \({M_0}\left( {{x_0},{y_0},{z_0}} \right)\) và nhận \(\vec n = \left( {A;B;C} \right)\) làm một vectơ pháp tuyến là \(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\).

b) Một vectơ pháp tuyến của mặt phẳng là \(\vec n = \left[ {\vec u,\vec v} \right]\). Sau đó viết phương trình mặt phẳng khi biết một điểm đi qua và một vectơ pháp tuyến.

c) Sử dụng phương trình mặt phẳng theo đoạn chắn.

Lời giải chi tiết

a) Phương trình mặt phẳng đi qua điểm \(A\left( {2;0;0} \right)\) và nhận \(\vec n = \left( {2;1; - 1} \right)\) làm vectơ pháp tuyến là \(2\left( {x - 2} \right) + 1\left( {y - 0} \right) - 1\left( {z - 0} \right) = 0 \Leftrightarrow 2x + y - z - 4 = 0.\)

b) Mặt phẳng \(\left( P \right)\) đi qua điểm \(B\left( {1;2;3} \right)\) và song song với giá của mỗi vectơ \(\vec u = \left( {1;2;3} \right)\) và \(\vec v = \left( { - 2;0;1} \right)\). Do \(\left( P \right)\) song song với giá của \(\vec u\) và \(\vec v\) nên \(\vec u\) và \(\vec v\) là một cặp vectơ chỉ phương của \(\left( P \right)\). Do đó, một vectơ pháp tuyến của \(\left( P \right)\) là:

\(\vec n = \left[ {\vec u,\vec v} \right] = \left( {2.1 - 3.0;3.\left( { - 2} \right) - 1.1;1.0 - 2.\left( { - 2} \right)} \right) = \left( {2; - 7;4} \right).\)

Phương trình mặt phẳng \(\left( P \right)\) đi qua \(B\left( {1;2;3} \right)\) và có một vectơ pháp tuyến là \(\vec n = \left( {2; - 7;4} \right)\) là \(2\left( {x - 1} \right) - 7\left( {y - 2} \right) + 4\left( {z - 3} \right) = 0 \Leftrightarrow 2x - 7y + 4z = 0.\)


Cùng chủ đề:

Giải bài tập 1 trang 24 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 1 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 1 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 1 trang 36 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 1 trang 37 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 1 trang 42 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 1 trang 50 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 1 trang 56 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 1 trang 59 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 1 trang 64 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 1 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo