Giải bài tập 14 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo — Không quảng cáo

Toán 12 Chân trời sáng tạo


Giải bài tập 14 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo

Tính đạo hàm của (Fleft( x right) = ln left( {x + sqrt {{x^2} + 1} } right)). Từ đó suy ra nguyên hàm của (fleft( x right) = frac{1}{{sqrt {{x^2} + 1} }}).

Đề bài

Tính đạo hàm của \(F\left( x \right) = \ln \left( {x + \sqrt {{x^2} + 1} } \right)\). Từ đó suy ra nguyên hàm của \(f\left( x \right) = \frac{1}{{\sqrt {{x^2} + 1} }}\).

Phương pháp giải - Xem chi tiết

Tính đạo hàm của \(F\left( x \right) = \ln \left( {x + \sqrt {{x^2} + 1} } \right)\) và kết luận.

Lời giải chi tiết

Ta có \(F'\left( x \right) = \left[ {\ln \left( {x + \sqrt {{x^2} + 1} } \right)} \right]' = \frac{{\left( {x + \sqrt {{x^2} + 1} } \right)'}}{{x + \sqrt {{x^2} + 1} }} = \frac{{1 + \frac{{\left( {{x^2} + 1} \right)'}}{{2\sqrt {{x^2} + 1} }}}}{{x + \sqrt {{x^2} + 1} }} = \frac{{1 + \frac{x}{{\sqrt {{x^2} + 1} }}}}{{x + \sqrt {{x^2} + 1} }}\)

\( = \frac{{\sqrt {{x^2} + 1}  + x}}{{\left( {x + \sqrt {{x^2} + 1} } \right).\sqrt {{x^2} + 1} }} = \frac{1}{{\sqrt {{x^2} + 1} }} = f\left( x \right)\)

Như vậy \(F\left( x \right) = \ln \left( {x + \sqrt {{x^2} + 1} } \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{\sqrt {{x^2} + 1} }}\).

Do đó \(\int {f\left( x \right)dx}  = F\left( x \right) + C \Rightarrow \int {\frac{1}{{\sqrt {{x^2} + 1} }}dx}  = \ln \left( {x + \sqrt {{x^2} + 1} } \right) + C\)


Cùng chủ đề:

Giải bài tập 12 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 13 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 13 trang 38 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 13 trang 66 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 13 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 14 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 14 trang 38 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 14 trang 65 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 14 trang 67 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 15 trang 29 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 15 trang 37 SGK Toán 12 tập 1 - Chân trời sáng tạo