Giải bài tập 2 trang 71 SGK Toán 9 tập 1 - Chân trời sáng tạo — Không quảng cáo

Toán 9 chân trời sáng tạo


Giải bài tập 2 trang 71 SGK Toán 9 tập 1 - Chân trời sáng tạo

Cho tam giác ABC có BC = 20 cm, (widehat {ABC} = {22^o},widehat {ACB} = {30^o}) a) Tính khoảng cách từ điểm B đến đường thẳng AC. b) Tính các cạnh và các góc còn lại của tam giác ABC. c) Tính khoảng cách từ điểm A đến đường thẳng BC.

Đề bài

Cho tam giác ABC có BC = 20 cm, \(\widehat {ABC} = {22^o},\widehat {ACB} = {30^o}\)

a) Tính khoảng cách từ điểm B đến đường thẳng AC.

b) Tính các cạnh và các góc còn lại của tam giác ABC.

c) Tính khoảng cách từ điểm A đến đường thẳng BC.

Phương pháp giải - Xem chi tiết

-  Đọc kĩ dữ liệu đề bài để vẽ hình

-  Dựa vào định lí: Xét tam giác vuông:

+ Mỗi cạnh góc vuông bằng cạnh huyền nhân sin góc đối hoặc nhân côsin góc kề rồi suy ra cạnh góc vuông.

+ Áp dụng định lý Pythagore trong tam giác vuông.

Lời giải chi tiết

a) Gọi BD là đường cao hạ từ B xuống AC.

Xét tam giác BDC, \(\widehat {ACB} = {30^o}\) ta có:

\(BD = \sin \widehat {ACB}.BC = \sin {30^o}.20 = 10cm\)

Vậy khoảng cách từ điểm B đến đường thẳng AC chính là BD = 10 cm.

b) Xét tam giác ABC, ta có:

\(\widehat {CAB} = {180^o} - \widehat {ACB} - \widehat {ABC} = {180^o} - {30^o} - {22^o} = {128^o}\)

Xét tam giác ABD vuông tại D, \(\widehat {CAB} = {128^o}\) nên \(\widehat {DAB} = {180^o - 128^o = 52^o}\), ta có:

\(AB = \frac{{BD}}{{\sin \widehat {DAB}}} \approx 12,7\)cm

Áp dụng định lý Pythagore, ta có:

\(AD = \sqrt {A{B^2} - B{D^2}}  = \sqrt {{{12.7}^2} - {{10}^2}}  \approx 7,8cm\)

Xét tam giác BCD vuông tại D, \(\widehat {ACB} = {30^o}\) ta có:

\(CD = \frac{{BD}}{{\tan \widehat {ACB}}} \approx 17,3\)cm

Suy ra \(AC = CD - AD \approx 17,3 - 7,8 = 9,5 cm\).

c) Gọi AE là đường cao hạ từ A xuống BC.

Xét tam giác ACE vuông tại E, \(\widehat {ACB} = {30^o}\), ta có:

\(AE =  AC.sin\widehat {ACB} = 9,5.sin 30^o \approx 4,8 cm.\)

Vậy khoảng cách từ điểm A đến đường thẳng BC khoảng 4,8 cm.


Cùng chủ đề:

Giải bài tập 2 trang 57 SGK Toán 9 tập 1 - Chân trời sáng tạo
Giải bài tập 2 trang 60 SGK Toán 9 tập 2 - Chân trời sáng tạo
Giải bài tập 2 trang 62 SGK Toán 9 tập 2 - Chân trời sáng tạo
Giải bài tập 2 trang 66 SGK Toán 9 tập 1 - Chân trời sáng tạo
Giải bài tập 2 trang 69 SGK Toán 9 tập 2 - Chân trời sáng tạo
Giải bài tập 2 trang 71 SGK Toán 9 tập 1 - Chân trời sáng tạo
Giải bài tập 2 trang 72 SGK Toán 9 tập 1 - Chân trời sáng tạo
Giải bài tập 2 trang 74 SGK Toán 9 tập 2 - Chân trời sáng tạo
Giải bài tập 2 trang 79 SGK Toán 9 tập 2 - Chân trời sáng tạo
Giải bài tập 2 trang 81 SGK Toán 9 tập 2 - Chân trời sáng tạo
Giải bài tập 2 trang 82 SGK Toán 9 tập 1 - Chân trời sáng tạo