Giải bài tập 6. 50 trang 31 SGK Toán 9 tập 2 - Kết nối tri thức — Không quảng cáo

Toán 9 kết nối tri thức


Giải bài tập 6.50 trang 31 SGK Toán 9 tập 2 - Kết nối tri thức

Các kĩ sư đảm bảo an toàn của đường cao tốc thường sử dụng công thức (d = 0,05{v^2} + 1,1v) để ước tính khoảng cách an toàn tối thiểu d (feet) (tức là độ dài quãng đường mà xe đi được kể từ khi đạp phanh đến khi xe dừng lại) đối với một phương tiện di chuyển với tốc độ v (dặm/ giờ) (theo Algebra 2, NXB MacGraw-Hill, 2008). Giả sử giới hạn tốc độ trên một đường cao tốc nào đó là 70 dặm/ giờ. Nếu một ô tô có thể dừng lại sau 300 feet kể từ khi đạp phanh thì ô tô đó có chạy nhanh hơn giới hạn tốc

Đề bài

Các kĩ sư đảm bảo an toàn của đường cao tốc thường sử dụng công thức \(d = 0,05{v^2} + 1,1v\) để ước tính khoảng cách an toàn tối thiểu d (feet) (tức là độ dài quãng đường mà xe đi được kể từ khi đạp phanh đến khi xe dừng lại) đối với một phương tiện di chuyển với tốc độ v (dặm/ giờ) (theo Algebra 2, NXB MacGraw-Hill, 2008 ). Giả sử giới hạn tốc độ trên một đường cao tốc nào đó là 70 dặm/ giờ. Nếu một ô tô có thể dừng lại sau 300 feet kể từ khi đạp phanh thì ô tô đó có chạy nhanh hơn giới hạn tốc độ của đường cao tốc này không?

Phương pháp giải - Xem chi tiết

+ Thay \(d = 300feet\) vào công thức \(d = 0,05{v^2} + 1,1v\) để tìm v.

+ So sánh vận tốc đó với 70 dặm/ giờ, từ đó đưa ra kết luận.

Lời giải chi tiết

Với \(d = 300feet\) ta có: \(0,05{v^2} + 1,1v = 300\)

\(0,05{v^2} + 1,1,v - 300 = 0\)

Ta có: \(\Delta  = 1,{1^2} - 4.0,05.\left( { - 300} \right) = 61,21\) nên phương trình có hai nghiệm phân biệt

\(\begin{array}{l}{v_1} = \frac{{ - 1,1 + \sqrt {61,21} }}{{2.0,05}} =  - 11 + \sqrt {6121} \left( {tm\;do\;v > 0} \right);\\{v_2} = \frac{{ - 1,1 - \sqrt {61,21} }}{{2.0,05}} =  - 11 - \sqrt {6121} \left( {ktm\;do\;v > 0} \right)\end{array}\)

Vì \( - 11 + \sqrt {6121}  < 70\) nên ô tô dừng lại sau 300 feet kể từ khi đạp phanh thì ô tô đó không chạy nhanh hơn giới hạn tốc độ của đường cao tốc này.

Chú ý khi giải: Tốc độ trong chuyển động luôn dương.


Cùng chủ đề:

Giải bài tập 6. 45 trang 30 SGK Toán 9 tập 2 - Kết nối tri thức
Giải bài tập 6. 46 trang 30 SGK Toán 9 tập 2 - Kết nối tri thức
Giải bài tập 6. 47 trang 30 SGK Toán 9 tập 2 - Kết nối tri thức
Giải bài tập 6. 48 trang 31 SGK Toán 9 tập 2 - Kết nối tri thức
Giải bài tập 6. 49 trang 31 SGK Toán 9 tập 2 - Kết nối tri thức
Giải bài tập 6. 50 trang 31 SGK Toán 9 tập 2 - Kết nối tri thức
Giải bài tập 6. 51 trang 31 SGK Toán 9 tập 2 - Kết nối tri thức
Giải bài tập 6. 52 trang 31 SGK Toán 9 tập 2 - Kết nối tri thức
Giải bài tập 7 trang 127 SGK Toán 9 tập 2 - Kết nối tri thức
Giải bài tập 7. 1 trang 36 SGK Toán 9 tập 2 - Kết nối tri thức
Giải bài tập 7. 2 trang 37 SGK Toán 9 tập 2 - Kết nối tri thức