Giải bài tập 6 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo
Cho (D) là hình phẳng giới hạn bởi đồ thị hàm số (y = sqrt {4 - x} ) (left( {x le 4} right)), trục tung và trục hoành (hình dưới đây). Tính thể tích khối tròn xoay tạo thành khi quay (D) quanh trục (Ox).
Đề bài
Cho \(D\) là hình phẳng giới hạn bởi đồ thị hàm số \(y = \sqrt {4 - x} \) \(\left( {x \le 4} \right)\), trục tung và trục hoành (hình 18). Tính thể tích khối tròn xoay tạo thành khi quay \(D\) quanh trục \(Ox\).
Phương pháp giải - Xem chi tiết
Thể tích khối tròn xoay khi quay hình phẳng \(D\) được giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a\), \(x = b\) là \(V = \pi \int\limits_a^b {{f^2}\left( x \right)dx} \)
Lời giải chi tiết
Ta nhận thấy rằng hình phẳng \(D\) được giới hạn bởi đồ thị hàm số \(y = \sqrt {4 - x} \), trục hoành và hai đường thẳng \(x = 0\) (trục tung), \(x = 4\).
Thể tích khối tròn xoay khi quay \(D\) quanh trục \(Ox\) là:
\(V = \pi \int\limits_0^4 {{{\left( {\sqrt {4 - x} } \right)}^2}dx} = \pi \int\limits_0^4 {\left( {4 - x} \right)dx} = \pi \left. {\left( {4x - \frac{{{x^2}}}{2}} \right)} \right|_0^4 = 8\pi \)