Processing math: 45%

Giải bài tập 6 trang 37 SGK Toán 12 tập 1 - Chân trời sáng tạo — Không quảng cáo

Toán 12 Chân trời sáng tạo


Giải bài tập 6 trang 37 SGK Toán 12 tập 1 - Chân trời sáng tạo

Tiệm cận xiên của đồ thị hàm số (y = frac{{2{x^3} + 3{x^2} - 3}}{{{x^2} - 1}}) là đường thẳng có phương trình A. (y = 2x + 3) B. (y = x + 3) C. (y = 2x + 1) D. (y = x + 1)

Đề bài

Tiệm cận xiên của đồ thị hàm số y=2x3+3x23x21 là đường thẳng có phương trình

A. y=2x+3              B. y=x+3                C. y=2x+1              D. y=x+1

Phương pháp giải - Xem chi tiết

Đường thẳng y = ax + b, a ≠ 0, được gọi là đường tiệm cận xiên (hay tiệm cận xiên) của đồ thị hàm số y = f(x) nếu lim hoặc \mathop {\lim }\limits_{x \to  + \infty } [f(x) - (ax + b)] = 0

Lời giải chi tiết

Chọn A

Tập xác định: D = \mathbb{R}\backslash \{  - 1;1\}

Ta có: a = \mathop {\lim }\limits_{x \to  + \infty } \frac{y}{x} = \mathop {\lim }\limits_{x \to  + \infty }  = \frac{{2{x^3} + 3{x^2} - 3}}{{{x^3} - x}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{2{x^3} + 3{x^2} - 3}}{{{x^3} - x}} = 2

b = \mathop {\lim }\limits_{x \to  + \infty } (y - ax) = \mathop {\lim }\limits_{x \to  + \infty } (\frac{{2{x^3} + 3{x^2} - 3}}{{{x^2} - 1}} - 2x) = 3

Ta có: \mathop {\lim }\limits_{x \to  + \infty } [y - (ax + b)] = \mathop {\lim }\limits_{x \to  + \infty } [\frac{{2{x^3} + 3{x^2} - 3}}{{{x^2} - 1}} - (2x + 3)] = 0

Do đó, đồ thị hàm số có tiệm cận xiên là đường thẳng y = 2x + 3


Cùng chủ đề:

Giải bài tập 6 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 6 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 6 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 6 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 6 trang 36 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 6 trang 37 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 6 trang 42 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 6 trang 51 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 6 trang 57 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 6 trang 60 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 6 trang 64 SGK Toán 12 tập 1 - Chân trời sáng tạo