Giải bài tập 6 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo — Không quảng cáo

Toán 12 Chân trời sáng tạo


Giải bài tập 6 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo

Giá trị của (intlimits_{ - 2}^1 {left( {4{x^3} + 3{x^2} + 8x} right)dx} + intlimits_1^2 {left( {4{x^3} + 3{x^2} + 8x} right)dx} ) bằng A. (16) B. ( - 16) C. (52) D. (0)

Đề bài

Giá trị của \(\int\limits_{ - 2}^1 {\left( {4{x^3} + 3{x^2} + 8x} \right)dx}  + \int\limits_1^2 {\left( {4{x^3} + 3{x^2} + 8x} \right)dx} \) bằng

A. \(16\)

B. \( - 16\)

C. \(52\)

D. \(0\)

Phương pháp giải - Xem chi tiết

Sử dụng các tính chất của tích phân để tính giá trị của tích phân trên.

Lời giải chi tiết

Ta có:

\(\int\limits_{ - 2}^1 {\left( {4{x^3} + 3{x^2} + 8x} \right)dx}  + \int\limits_1^2 {\left( {4{x^3} + 3{x^2} + 8x} \right)dx}  = \int\limits_{ - 2}^2 {\left( {4{x^3} + 3{x^2} + 8x} \right)dx} \)

\( = \left. {\left( {{x^4} + {x^3} + 4{x^2}} \right)} \right|_{ - 2}^2 = 40 - 24 = 16\)

Vậy đáp án đúng là A.


Cùng chủ đề:

Giải bài tập 6 trang 12 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 6 trang 13 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 6 trang 18 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 6 trang 20 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 6 trang 27 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 6 trang 28 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 6 trang 36 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 6 trang 37 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 6 trang 42 SGK Toán 12 tập 2 - Chân trời sáng tạo
Giải bài tập 6 trang 51 SGK Toán 12 tập 1 - Chân trời sáng tạo
Giải bài tập 6 trang 57 SGK Toán 12 tập 1 - Chân trời sáng tạo