Giải bài tập 6 trang 97 SGK Toán 9 tập 1 - Chân trời sáng tạo — Không quảng cáo

Toán 9 chân trời sáng tạo


Giải bài tập 6 trang 97 SGK Toán 9 tập 1 - Chân trời sáng tạo

Xác định số đo các cung (oversetfrown{AB};oversetfrown{BC};oversetfrown{CA}) trong mỗi hình vẽ sau:

Đề bài

Xác định số đo các cung \(\overset\frown{AB};\overset\frown{BC};\overset\frown{CA}\) trong mỗi hình vẽ sau:

Phương pháp giải - Xem chi tiết

a) Dựa vào định lí: Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo cung bị chắn.

b) Số đo cung nhỏ bằng số đo của góc ở tâm chắn cung đó

Chứng minh tam giác OBA đều suy ra cung AB. Sau đó suy ra cung BC.

Lời giải chi tiết

a) Xét tam giác ABC, ta có: \(\widehat{ACB}={{180}^{o}}-\widehat{CBA}-\widehat{BAC}={{180}^{o}}-{{60}^{o}}-{{67}^{o}}={{53}^{o}}\)

Ta có sđ\(\overset\frown{AB}\) = 2.\(\widehat{ACB}\) = 2. 53 o = 106 o (Vì \(\overset\frown{AB}\) và \(\widehat{ACB}\) cùng chắn cung AB)

Ta có sđ\(\overset\frown{BC}\) = 2.\(\widehat{BAC}\) = 2. 67 o = 134 o (Vì \(\overset\frown{BC}\) và \(\widehat{BAC}\) cùng chắn cung BC)

Ta có sđ\(\overset\frown{AC}\) = 2.\(\widehat{ABC}\) = 2. 60 o = 120 o (Vì \(\overset\frown{AC}\) và \(\widehat{ABC}\) cùng chắn cung AC).

b) Ta có sđ\(\overset\frown{AC}\) và góc ở tâm \(\widehat{COA}\) cùng chắn cung AC

suy ra sđ\(\overset\frown{AC}\) = \(\widehat{COA}\) = 135 o .

Nối O với B.

Xét tam giác OAB có AO = OB (= R) suy ra tam giác OAB cân tại A.

Mặt khác, \(\widehat {OAB} = {60^o}\) nên tam giác OAB là tam giác đều.

Ta có sđ\(\overset\frown{AB}\) = \(\widehat{AOB}\) = \({{60}^{o}}\) (Vì \(\overset\frown{AB}\) và \(\widehat{AOB}\) cùng chắn cung AB)

Suy ra sđ\(\overset\frown{BC}\) = 360 o - sđ\(\overset\frown{AB}\) - sđ\(\overset\frown{AC}\) = 360 o - \({60^o}\) - 135 o = 165 o .


Cùng chủ đề:

Giải bài tập 6 trang 74 SGK Toán 9 tập 2 - Chân trời sáng tạo
Giải bài tập 6 trang 80 SGK Toán 9 tập 2 - Chân trời sáng tạo
Giải bài tập 6 trang 81 SGK Toán 9 tập 2 - Chân trời sáng tạo
Giải bài tập 6 trang 82 SGK Toán 9 tập 1 - Chân trời sáng tạo
Giải bài tập 6 trang 89 SGK Toán 9 tập 1 - Chân trời sáng tạo
Giải bài tập 6 trang 97 SGK Toán 9 tập 1 - Chân trời sáng tạo
Giải bài tập 6 trang 98 SGK Toán 9 tập 2 - Chân trời sáng tạo
Giải bài tập 6 trang 102 SGK Toán 9 tập 1 - Chân trời sáng tạo
Giải bài tập 6 trang 103 SGK Toán 9 tập 1 - Chân trời sáng tạo
Giải bài tập 7 trang 17 SGK Toán 9 tập 2 - Chân trời sáng tạo
Giải bài tập 7 trang 21 SGK Toán 9 tập 1 - Chân trời sáng tạo