Giải mục 2 trang 21, 22 SGK Toán 11 tập 1 - Chân trời sáng tạo — Không quảng cáo

Toán 11, giải toán lớp 11 chân trời sáng tạo Bài 3. Các công thức lượng giác Toán 11 Chân trời sáng


Giải mục 2 trang 21, 22 SGK Toán 11 tập 1 - Chân trời sáng tạo

Hãy áp dụng công thức cộng cho trường hợp β = α và tính các giá trị lượng giác của góc 2α.

Hoạt động 2

Hãy áp dụng công thức cộng cho trường hợp β = α và tính các giá trị lượng giác của góc 2α.

Phương pháp giải:

\(\cos \left( {a + b} \right) = \cos a\cos b - \sin asinb\)

\(\tan \left( {a + b} \right) = \frac{{\tan a + \tan b}}{{1 - \tan a\tan b}}\)

Lời giải chi tiết:

\(\begin{array}{l}\cos \left( {\alpha  + \alpha } \right) = \cos 2\alpha  = \cos \alpha \cos \alpha  - \sin \alpha sin\alpha  = {\cos ^2}\alpha  - {\sin ^2}\alpha \\ = {\cos ^2}\alpha  + {\sin ^2}\alpha  - 2{\sin ^2}\alpha  = 1 - 2{\sin ^2}\alpha  = 2{\cos ^2}a - 1\end{array}\)

\(\tan 2\alpha  = \tan \left( {\alpha  + \alpha } \right) = \frac{{\tan \alpha  + \tan \alpha }}{{1 - \tan \alpha .\tan \alpha }} = \frac{{2\tan a}}{{1 - {{\tan }^2}a}}\)

Thực hành 2

Tính \(\cos \frac{\pi }{8}\) và \(\tan \frac{\pi }{8}\)

Phương pháp giải:

Sử dụng công thức

\(\begin{array}{l}\cos 2a = {\cos ^2}a - {\sin ^2}a = 2{\cos ^2}a - 1 = 1 - 2{\sin ^2}a\\\tan 2a = \frac{{2\tan a}}{{1 - {{\tan }^2}a}}\end{array}\)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}cos\left( {\frac{\pi }{4}} \right) = cos\left( {2.\frac{\pi }{8}} \right) = 2co{s^2}\frac{\pi }{8} - 1 = \frac{{\sqrt 2 }}{2}\\ \Rightarrow co{s^2}\frac{\pi }{8} = \frac{{\sqrt 2  + 2}}{4}\end{array}\)

\( \Rightarrow cos\frac{\pi }{8} = \sqrt {\frac{{\sqrt 2  + 2}}{4}}  = \frac{{\sqrt {\sqrt 2  + 2} }}{2}\) (vì \(0 < \frac{\pi }{8} < \frac{\pi }{2}\))

Ta có:

\(\tan \left( {\frac{\pi }{4}} \right) = \tan \left( {2.\frac{\pi }{8}} \right) = \frac{{2\tan \frac{\pi }{8}}}{{1 - {{\tan }^2}\frac{\pi }{8}}} = 1\)

\(\begin{array}{l} \Leftrightarrow 1 - {\tan ^2}\frac{\pi }{8} = 2\tan \frac{\pi }{8}\\ \Leftrightarrow {\tan ^2}\frac{\pi }{8} + 2\tan \frac{\pi }{8} - 1 = 0\end{array}\)

\( \Leftrightarrow \tan \frac{\pi }{8} =  - 1 + \sqrt 2 \)(vì \(0 < \frac{\pi }{8} < \frac{\pi }{2}\))


Cùng chủ đề:

Giải mục 1 trang 136, 137 SGK Toán 11 tập 1 - Chân trời sáng tạo
Giải mục 2 trang 7, 8, 9 SGK Toán 11 tập 2 - Chân trời sáng tạo
Giải mục 2 trang 9, 10 SGK Toán 11 tập 1 - Chân trời sáng tạo
Giải mục 2 trang 16 SGK Toán 11 tập 1 - Chân trời sáng tạo
Giải mục 2 trang 16 SGK Toán 11 tập 2 - Chân trời sáng tạo
Giải mục 2 trang 21, 22 SGK Toán 11 tập 1 - Chân trời sáng tạo
Giải mục 2 trang 22, 23, 24 SGK Toán 11 tập 2 - Chân trời sáng tạo
Giải mục 2 trang 26, 27 SGK Toán 11 tập 1 - Chân trời sáng tạo
Giải mục 2 trang 28, 29, 30 SGK Toán 11 tập 2 - Chân trời sáng tạo
Giải mục 2 trang 35, 36 SGK Toán 11 tập 1 - Chân trời sáng tạo
Giải mục 2 trang 39, 40 SGK Toán 11 tập 2 - Chân trời sáng tạo