Giải mục II trang 50, 51 SGK Toán 10 tập 1 - Cánh diều — Không quảng cáo

Toán 10, giải toán lớp 10 cánh diều Bài 4. Bất phương trình bậc hai một ẩn Toán 10 Cánh diều


Giải mục II trang 50, 51 SGK Toán 10 tập 1 - Cánh diều

a) Lập bảng xét dấu của tam thức bậc hai Giải các bất phương trình bậc hai sau: Giải mỗi bất phương trình bậc hai sau bằng cách sử dụng đồ thị:

Hoạt động 2

a) Lập bảng xét dấu của tam thức bậc hai \(f\left( x \right) = {x^2} - x - 2\)

b) Giải bất phương trình \({x^2} - x - 2 > 0\)

Phương pháp giải:

a) Tìm nghiệm của phương trình \({x^2} - x - 2 = 0\), xét hệ số và lập bảng xét dấu.

b) Dựa vào bảng xét dấu, lấy các khoảng để \(f\left( x \right) > 0\)

Lời giải chi tiết:

a) Ta có tam thức bậc hai \(f\left( x \right) = {x^2} - x - 2\) có 2 nghiệm phân biệt \({x_1} =  - 1,{x_2} = 2\) và hệ số \(a = 1 > 0\)

Ta có bảng xét dấu f(x) như sau:

Vậy tập nghiệm của bất phương trình là \(\left( { - \infty ; - 1} \right) \cup \left( {2; + \infty } \right)\)b) Từ bảng xét dấu ta thấy \(f\left( x \right) > 0 \Leftrightarrow \left[ \begin{array}{l}x <  - 1\\x > 2\end{array} \right.\)

Luyện tập – vận dụng 2

Giải các bất phương trình bậc hai sau:

a) \(3{x^2} - 2x + 4 \le 0\)

b) \( - {x^2} + 6x - 9 \ge 0\)

Phương pháp giải:

Giải bất phương trình dạng \(f\left( x \right) > 0\).

Bước 1: Xác định dấu của hệ số a và tìm nghiệm của \(f\left( x \right)\)(nếu có)

Bước 2: Sử dụng định lí về dấu của tam thức bậc hai để tìm tập hợp những giá trị của x sao cho \(f\left( x \right)\) mang dấu “+”

Bước 3: Các bất phương trình bậc hai có dạng \(f\left( x \right) < 0,f\left( x \right) \ge 0,f\left( x \right) \le 0\) được giải bằng cách tương tự.

Lời giải chi tiết:

a) Ta có \(a = 3 > 0\) và tam thức bậc hai \(f\left( x \right) = 3{x^2} - 2x + 4\) có \(\Delta ' = {1^2} - 3.4 =  - 11 < 0\)

=> \(f\left( x \right) = 3{x^2} - 2x + 4\) vô nghiệm.

=> \(3{x^2} - 2x + 4 > 0\forall x \in \mathbb{R}\)

b) Ta có: \(a =  - 1 < 0\) và \(\Delta ' = {3^2} - \left( { - 1} \right).\left( { - 9} \right) = 0\)

=> \(f\left( x \right) =  - {x^2} + 6x - 9\) có nghiệm duy nhất \(x = 3\).

=> \( - {x^2} + 6x - 9 < 0\forall x \in \mathbb{R}\backslash \left\{ 3 \right\}\)

Hoạt động 3

Cho bất phương trình \({x^2} - 4x + 3 > 0\left( 2 \right)\).

Quan sát parabol \(\left( P \right):{x^2} - 4x + 3\) ở Hình 26 và cho biết:

a) Bất phương trình (2) biểu diễn phần parabol (P) nằm ở phía nào của trục hoành.

b) Phần parabol (P) nằm phía trên trục hoành ứng với những giá trị nào của x.

Phương pháp giải:

- Nếu dấu bất phương trình dương thì bất phương trình biểu diễn phần (P) phía trên trục hoành và ngược lại.

Lời giải chi tiết:

a) Từ đồ thị ta thấy bất phương trình (2) biểu diễn phần parabol (P) nằm ở phía trên trục hoành.

b) Phần parabol (P) nằm phía trên trục hoành ứng với các giá trị của x thuộc \(\left( { - \infty ;1} \right) \cup \left( {3; + \infty } \right)\)

Luyện tập – vận dụng 3

Giải mỗi bất phương trình bậc hai sau bằng cách sử dụng đồ thị:

a) \({x^2} + 2x + 2 > 0\)

b) \( - 3{x^2} + 2x - 1 > 0\)

Phương pháp giải:

Bước 1: Vẽ đồ thị biểu diễn các hàm số.

Bước 2: Quan sát đồ thị và lấy các giá trị tương ứng với bất phương trình.

Lời giải chi tiết:

a) Ta có đồ thị:

Từ đồ thị ta thấy \({x^2} + 2x + 2 > 0\) biểu diễn phần parabol \(y = {x^2} + 2x + 2\) nằm phía trên trục hoành, tương ứng với mọi \(x \in \mathbb{R}\).

Vậy tập nghiệm của bất phương trình \({x^2} + 2x + 2 > 0\) là \(\mathbb{R}\).

b) Ta có đồ thị:

Từ đồ thị ta thấy \( - 3{x^2} + 2x - 1 > 0\) biểu diễn phần parabol \(y =  - 3{x^2} + 2x - 1\) nằm phía trên trục hoành, tương ứng với \(x \in \emptyset \)

Vậy tập nghiệm của bất phương trình \( - 3{x^2} + 2x - 1 > 0\) là \(\emptyset \).


Cùng chủ đề:

Giải mục II trang 34, 35 SGK Toán 10 tập 1 - Cánh diều
Giải mục II trang 37, 38 SGK Toán 10 tập 2 - Cánh diều
Giải mục II trang 39, 40, 41, 42 SGK Toán 10 tập 1 - Cánh diều
Giải mục II trang 43, 44, 45 SGK Toán 10 tập 2 - Cánh diều
Giải mục II trang 46, 47 SGK Toán 10 tập 1 - Cánh diều
Giải mục II trang 50, 51 SGK Toán 10 tập 1 - Cánh diều
Giải mục II trang 51 SGK Toán 10 tập 2 - Cánh diều
Giải mục II trang 57, 58 SGK Toán 10 tập 1 - Cánh diều
Giải mục II trang 61, 62, 63 SGK Toán 10 tập 2 - Cánh diều
Giải mục II trang 67, 68 SGK Toán 10 tập 1 - Cánh diều
Giải mục II trang 69 SGK Toán 10 tập 2 - Cánh diều