Giải SBT Toán 11 bài 3 trang 16, 17, 18 - Chân trời sáng tạo — Không quảng cáo

SBT Toán 11 - Giải SBT Toán 11 - Chân trời sáng tạo


Bài 1 trang 19 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Không dùng máy tính cầm tay. Tính giá trị của các biểu thức sau: a) \(\sin \frac{{19\pi }}{{24}}\cos \frac{{37\pi }}{{24}}\); b) \(\cos \frac{{41\pi }}{{12}} - \cos \frac{{13\pi }}{{12}}\); c) \(\frac{{\tan \frac{\pi }{7} + \tan \frac{{3\pi }}{{28}}}}{{1 + \tan \frac{{6\pi }}{7}\tan \frac{{3\pi }}{{28}}}}\).

Bài 2 trang 19 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Cho \(\cos \alpha = \frac{{11}}{{61}}\) và \( - \frac{\pi }{2} < \alpha < 0\), tính giá trị của các biểu thức sau:

Bài 3 trang 19 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Rút gọn các biểu thức sau: a) \(\sin x{\cos ^5}x - \cos x{\sin ^5}x\); b) \(\frac{{\sin 3x\cos 2x + \sin x\cos 6x}}{{\sin 4x}}\);

Bài 4 trang 19 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Chứng minh các đẳng thức lượng giác sau: a) \(4\cos x\cos \left( {\frac{\pi }{3} - x} \right)\cos \left( {\frac{\pi }{3} + x} \right) = \cos 3x\);

Bài 5 trang 20 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Chứng minh rằng giá trị của các biểu thức không phụ thuộc vào giá trị của x. a) \({\sin ^2}x + \cos \left( {\frac{\pi }{3} - x} \right)\cos \left( {\frac{\pi }{3} + x} \right)\);

Bài 6 trang 20 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Cho tam giác ABC, chứng minh rằng: a) \(\cos A\cos B - \sin A\sin B + \cos C = 0\);

Bài 7 trang 20 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Cho \(\sin \alpha + \cos \alpha = m\). Tìm m để \(\sin 2\alpha = - \frac{3}{4}\).

Bài 8 trang 20 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Cho \(\sin \alpha = \frac{3}{5},\cos \beta = \frac{{12}}{{13}}\) và \({0^0} < \alpha ,\beta < {90^0}\). Tính giá trị của biểu thức \(\sin \left( {\alpha + \beta } \right)\) và \(\cos \left( {\alpha - \beta } \right)\).

Bài 9 trang 20 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Không sử dụng máy tính cầm tay, tính giá trị của các biểu thức sau: a) \(\sin {6^0}\cos {12^0}\cos {24^0}\cos {48^0}\); b) \(\cos {68^0}\cos {78^0} + \cos {22^0}\cos {12^0} + \cos {190^0}\).

Bài 10 trang 20 sách bài tập toán 11 - Chân trời sáng tạo tập 1

Phương trình dao động điều hòa của một vật tại thời điểm t giây được cho bởi công thức \(x\left( t \right) = A\cos \left( {\omega t + \varphi } \right)\), trong đó x(t) (cm) là li độ của vật tại thời điểm t giây, A là biên độ dao động \(\left( {A > 0} \right)\) và \(\varphi \in \left[ { - \pi ;\pi } \right]\) là pha ban đầu của dao động.


Cùng chủ đề:

Giải SBT Toán 11 bài 2 trang 77, 78, 79 - Chân trời sáng tạo
Giải SBT Toán 11 bài 2 trang 96, 97, 98 - Chân trời sáng tạo
Giải SBT Toán 11 bài 2 trang 111, 112, 113 - Chân trời sáng tạo
Giải SBT Toán 11 bài 2 trang 151, 152, 153 - Chân trời sáng tạo
Giải SBT Toán 11 bài 3 trang 14, 15, 16 - Chân trời sáng tạo
Giải SBT Toán 11 bài 3 trang 16, 17, 18 - Chân trời sáng tạo
Giải SBT Toán 11 bài 3 trang 56, 57, 58 - Chân trời sáng tạo
Giải SBT Toán 11 bài 3 trang 61, 62, 63 - Chân trời sáng tạo
Giải SBT Toán 11 bài 3 trang 86, 87, 88 - Chân trời sáng tạo
Giải SBT Toán 11 bài 3 trang 117, 118, 119 - Chân trời sáng tạo
Giải SBT Toán 11 bài 4 trang 19, 20, 21 - Chân trời sáng tạo