Cho tam giác \(ABC\) có \(AB = AC = 3cm\). Từ điểm \(M\) thuộc cạnh \(BC\), kẻ \(MD\) song song với \(AC\) và \(ME\) song song với \(AB\)
Cho tam giác \(ABC\) có các đường trung tuyến \(BD\) và \(CE\). Lấy các điểm \(H,K\) sao cho \(E\) là trung điểm của \(CH,D\) là trung điểm của \(BK\). Chứng minh:
Cho hình bình hành (ABCD). Trên cạnh (AD,BC) lần lượt lấy điểm (E,F) sao cho (AE = CF). Trên cạnh (AB,CD) lần lượt lấy điểm (M,N) sao cho (BM,DN). Chứng minh:
Cho tam giác nhọn \(ABC\) có ba đường cao \(AM,BN,CP\) cắt nhau tại \(H\). Qua \(B\) kẻ tia \(Bx\) vuông góc với \(AB\).
Cho hình bình hành \(ABCD\) có \(\widehat A > 90^\circ \), \(AB > BC\). Trên đường thẳng vuông góc với \(BC\) tại \(C\) lấy hai điểm \(E,F\)